Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T23:14:56.963Z Has data issue: false hasContentIssue false

Molybdenum polyoxometalate impregnated amino- functionalized mesoporous silica thin films as multifunctional materials for photochromic and electrochemical applications

Published online by Cambridge University Press:  31 January 2011

Xueao Zhang*
Affiliation:
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China
Wenjian Wu
Affiliation:
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China
Jianfang Wang
Affiliation:
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China
Changli Liu
Affiliation:
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China
Siwen Qian
Affiliation:
College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: xazhang@nudt.edu.cn
Get access

Abstract

Molybdenum polyoxometalate (PMo)/silica mesoporous composite thin films, which can be applied as multifunctional materials for photochromic and electrochemical applications, were prepared by impregnating PMo into amino-functionalized mesoporous silica thin films. The composite thin films possess excellent reversible photochromic properties and change from colorless to blue under ultraviolet (UV) irradiation. It is shown in the study that intervalence charge transfer and ligand-to-metal charge transfer are the main reasons for photochromism. After UV irradiation, the charge transfer occurs by the reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo (+6, +5), and the bleaching process of composite thin films is closely related to the presence of oxygen. Moreover, the composite thin films deposited on the indium tin oxide (ITO) substrate can be used as the electrode and have many advantages, including simple fabrication, fast response, and good stability. The modified ITO electrode retains the electrochemical properties of PMo, can catalyze the electroreduction of the BrO3−, and may be used as the current sensor for the BrO3−.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marlow, F., McGehee, M.D., Zhao, D., Chmelka, B.F.Stucky, G.D.: Doped mesoporous silica fibers: A new laser material. Adv. Mater. 11, 632 1999Google Scholar
2Yang, P., Wirnsberger, G., Huang, H.C., Cordero, S.R., McGehee, M.D., Scott, B., Deng, T., Whitesides, G.M., Chmelka, B.F., Buratto, S.K.Stucky, G.D.: Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 287, 465 2000Google Scholar
3Yuliarto, B., Zhou, H.S., Yamada, T., Honma, I., Katsumura, Y.Ichihara, M.: Effect of tin addition on mesoporous silica thin film and its application for surface photovoltage NO2 gas sensor. Anal. Chem. 76, 6719 2004CrossRefGoogle ScholarPubMed
4Liu, N., Dunphy, D.R., Atanassov, P., Bunge, S.D., Chen, Z., López, G.P., Boyle, T.J.Brinker, C.J.: Photoregulation of mass transport through a photoresponsive azboenzene-midified nanoporous membrane. Nano Lett. 4, 551 2004Google Scholar
5Goettmann, F., Moores, A., Boissière, C., Floch, P.L.Sanchez, C.: A selective chemical sensor based on theplasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small 1, 636 2005Google Scholar
6Ogawa, M., Kuroda, K.Mori, J.: Aluminium-containing mesoporous silica films as nono-vessels for organic photochemical reactions. Chem. Commun. 2441 2000CrossRefGoogle Scholar
7Wirnsberger, G., Scott, B.J., Chmelka, B.F.Stucky, G.D.: Fast response photochromic mesostructures. Adv. Mater. 12, 1450 2000Google Scholar
8Bae, J.Y., Jung, J.T.Bae, B.S.: Photochromism in spiropyran impregnated fluorinated mesoporous organosiliccate films. J. Mater. Res. 19, 2503 2004CrossRefGoogle Scholar
9Yang, H., Coombs, N., Sokolov, I.Ozin, G.A.: Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature 381, 589 1996CrossRefGoogle Scholar
10Tolbert, S.H., Scháffer, T.E., Feng, J., Hansma, P.K.Stucky, G.D.: A new phase of oriented mesoporous silicate thin films. Chem. Mater. 9, 1962 1997Google Scholar
11Zhang, X.A., Wu, W.J., Liu, C.L.Wang, J.F.: Biomimetic synthesis of ordered mesoporous silica inorganic films at the air-solution interface. Chin. J. Inorg. Chem. 22, 719 2006Google Scholar
12Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S.Ozin, G.A.: Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703 1996Google Scholar
13Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M.Gruner, S.M.: Biomimetic pathways for assembling inorganic thin films. Science 273, 892 1996CrossRefGoogle ScholarPubMed
14Schacht, S., Huo, Q., Voigt-Martin, I.G., Stucky, G.D.Schuüth, F.: Oil-water interface templating of mesoporus macroscale. Science 273, 768 1996Google Scholar
15Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M.H.Zink, J.I.: Continuous formation of supported cubic hexagonal mesoporous films by sol-gel dip-coating. Nature 389, 364 1997CrossRefGoogle Scholar
16Brinker, C.J., Lu, Y., Sellinger, A.Fan, H.: Evaporation induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 19993.0.CO;2-R>CrossRefGoogle Scholar
17Kundu, D., Zhou, H.S.Honma, I.: Thermally induced structural changes of lamellar and one-dimensional hexagonal mesoporous silica thin films. J. Mater. Sci. Lett. 17, 2089 1998CrossRefGoogle Scholar
18Honma, I., Zhou, H.S., Kundu, D.Endo, A.: Structural control of surfactant-templated hexagonal, cubic, and lamellar mesoporous silicate thin films prepared by spin-casting. Adv. Mater. 12, 1529 2000Google Scholar
19Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F.Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380 1998Google Scholar
20Grosso, D., Balkenende, A.R., Albouy, P.A., Lavergne, M.Babonneau, F.: Highly oriented 3D-hexagonal silica thin films produced with cetyltrimethylammonium bromide. J. Mater. Chem. 10, 2085 2000CrossRefGoogle Scholar
21Grosso, D., Babonneau, F., Albouy, P.A., Amenitsch, H., Balkenede, A.R., Brunet-Bruneau, A.Rivory, J.: An in situ study of mesostructured ctab-silica film formation during dip coating using time-resolved saxs and interferometry measurements. Chem. Mater. 14, 931 2002Google Scholar
22Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C.Boilot, J.P.: Phase diagram for mesoporous CTAB-silica films prepared under dynamic conditions. J. Mater. Chem. 13, 404 2003Google Scholar
23Besson, S., Gacoin, T., Ricolleau, C.Boilot, J.P.: Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem. Commun. 360 2003Google Scholar
24Gu, J.L., Shi, J.L., You, G.J., Xiong, L.M., Qian, S.X., Hua, Z.L.Chen, H.R.: Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response. Adv. Mater. 17, 557 2005CrossRefGoogle Scholar
25Okabe, A., Fukushima, T., Ariga, K.Aida, T.: Color-tunable transparent mesoporous silica films: Immobilization of one-dimensional columnar charge-transfer assemblies in aligned silicate nanochannels. Angew. Chem., Int. Ed. Engl. 41, 3414 2002Google Scholar
26Jung, S.B.Park, H.H.: Improvement of electrical properties of surfactant-templated mesoporous silica thin films by plasma treatment. Thin Solid Films 506–507, 360 2006CrossRefGoogle Scholar
27Gao, F., Naik, S.P., Sasaki, Y.Okubo, T.: Preparation and optical property of nanosized ZnO electrochemically deposited in mesoporous silica films. Thin Solid Films 495, 68 2006Google Scholar
28Wang, D., Zhou, W.L., McCaughy, B.F., Hampsey, J.E., Ji, X., Jiang, Y.B., Xu, H., Tang, J., Schmehl, R.H., O’Connor, C., Brinker, C.J.Lu, Y.: Electrodeposition of metallic nanowire thin films using mesoporous silica templates. Adv. Mater. 15, 130 2003Google Scholar
29Rohlfing, D.F., Rathouský, J., Rohlfíng, Y., Bartels, O.Wark, M.: Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 21, 11320 2005Google Scholar
30Kouzema, A.V., Fröba, M., Chen, L., Klar, P.J.Heimbrodt, W.: Cd1–xMnxS diluted magnetic semiconductors as nanostructured guest species in mesoporous thin film silica host media. Adv. Funct. Mater. 15, 168 2005CrossRefGoogle Scholar
31Luo, H., Wang, D., He, J.Lu, Y.: Magnetic cobalt nanowire thin films. J. Phys. Chem. B 109, 1919 2005Google Scholar
32Zhang, X., Guan, R.F., Zhang, F.Chan, K.Y.: Ordered amino-functionalized mesoporous silica thin films for high-density DNA probes. Scripta Mater. 54, 1651 2006CrossRefGoogle Scholar
33Zhang, T.R., Feng, W., Bao, C.Y., Lu, R., Zhang, X.T., Li, T.J.Zhao, Y.Y.: Fabrication of heteropolyoxometalate-based photochromic inorganic-organic nanocomposites. J. Mater. Res. 16, 2256 2001Google Scholar
34Li, L.D., Li, W.J., Sun, C.Q.Li, L.S.: Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM-41 and its electrochemistry. Electroanalysis 14, 368 2002Google Scholar
35Chong, A.S.M.Zhao, X.S.: Functionalized nanoporous silicas for the immobilization of penicillin acylase. Appl. Surf. Sci. 237, 398 2004Google Scholar
36Yamase, T.: Polyoxometalates for molecular devices: Antitumor activity and luminescence. Mol. Eng. 3, 241 1993Google Scholar
37Liu, N., Assink, R.A., Smarsy, B.Brinker, C.J.: Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable–NH2 groups. Chem. Commun. 1146 2003Google Scholar
38Fleisch, T.H.Mains, G.J.: An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 76, 780 1982Google Scholar
39Unoura, K.Tanaka, N.: Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate. Inorg. Chem. 22, 2963 1983Google Scholar