Skip to main content Accessibility help

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids

  • Jian Zhang (a1), Ingo Salzmann (a1), Peter Schäfer (a1), Martin Oehzelt (a2), Steffen Duhm (a1), Jürgen P. Rabe (a1) and Norbert Koch (a1)...


The morphology of nanocolumns grown by glancing angle deposition is studied for molecular materials forming amorphous and crystalline solids. Amorphous tris(8-hydroxyquinoline)aluminum nanocolumn arrays were obtained at sample rotation speeds varying from 0.3 rpm (revolutions per minute) to 30 rpm. For crystalline pentacene, an array of regular nanocolumns formed at a rotation speed of 3 rpm, while higher and lower rotation speeds led to a wide distribution of column heights and shapes. The incoming molecular flux and the molecular diffusion length on column surfaces, both dependent on rotation speed, were found to govern the resulting morphology of crystalline pentacene nanocolumns.


Corresponding author

Address all correspondence to these authors.


Hide All
1Hrudey, P.C.P.Westra, K.L., and Brett, M.J.: Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition. Adv. Mater. 18, 224 (2006).
2Hrudey, P.C.P., Szeto, B. and Brett, M.J.: Strong circular Bragg phenomena in self-ordered porous helical nanorod arrays of Alq3. Appl. Phys. Lett. 88, 251106 (2006).
3Zhang, J.Salzmann, I.Zhang, F.J., Xu, Z.Rogaschewski, S.Rabe, J.P., and Koch, N.: Arrays of crystalline C60 and pentacene nanocolumns. Appl. Phys. Lett. 90, 193117 (2007).
4Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).
5Sirringhaus, H.Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).
6Pope, M. and Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, UK, 1999).
7Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).
8Chabinyc, M.L. and Salleo, A.: Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem. Mater. 16, 4509 (2004).
9Young, N.O. and Kowal, J.: Optically active fluorite films. Nature 183, 104 (1959).
10Robbie, K.Brett, M.J., and Lakhtakia, A.: Chiral sculptured thin films. Nature 384, 616 (1996).
11Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol., A 15, 1460 (1997).
12Zhao, Y.P., Ye, D.X., Wang, G.C., and Lu, T.M.: Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 2, 351 (2002).
13Robbie, K.Shafai, C. and Brett, M.J.: Thin films with nanometer-scale pillar microstructure. J. Mater. Res. 14, 3158 (1999).
14Robbie, K.Friedrich, L.J., Dew, S.K., Smy, T. and Brett, M.J.: Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol., A 13, 1032 (1995).
15Dick, B.Brett, M.J., and Smy, T.: Investigation of substrate rotation at glancing incidence on thin-film morphology. J. Vac. Sci. Technol., B 21, 2569 (2003).
16Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793 (1997).
17Ruiz, R.Choudhary, D.Nickel, B.Toccoli, T.Chang, K.C., Mayer, A.C., Clancy, P.Blakely, J.M., Headrick, R.L., Iannotta, S. and Malliaras, G.G.: Pentacene thin film growth. Chem. Mater. 16, 4497 (2004).
18Cölle, M. and Brütting, W.: Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys. Status Solidi A 201, 1095 (2004).
19Shi, J. and Tang, C.: Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 70, 1665 (1997).
20Berleb, S. and Brütting, W.: Dispersive electron transport in tris (8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys. Rev. Lett. 89, 286601 (2002).
21Schiefer, S.Huth, M.Dobrinevski, A. and Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316 (2007).
22Nabok, D.Puschnig, P.Ambrosch-Draxl, C., Werzer, O.Resel, R. and Smilgies, D-M.: Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys. Rev. B 76, 235322 (2007).
23Yoshida, H.Inaba, K. and Sato, N.: X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 90, 181930 (2007).
24Mattheus, C.C., Dros, A.B., Baas, J.Meetsma, A.J., Boer, L. and Palstra, T.T.M.: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).
25Campbell, R.B., Robertson, J.M., and Trotter, J.: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta Crystallogr. 15, 289 (1962).
26Steudel, S.Vusser, S.D., Jonge, S.D., Janssen, D.Verlaak, S.Genoe, J. and Heremans, P.: Influence of the dielectric roughness on the performance of pentacene transistors. Appl. Phys. Lett. 85, 4400 (2004).
27Yang, H.Kim, S.H., Yang, L.Yang, S.Y., and Park, C.E.: Pentacene nanostructures on surface-hydrophobicity-controlled polymer/ SiO2 bilayer gate-dielectrics. Adv. Mater. 19, 2868 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed