Skip to main content

Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus

  • B.J.F. Bruet (a1), H.J. Qi (a2), M.C. Boyce (a2), R. Panas (a1), K. Tai (a1), L. Frick (a1) and C. Ortiz (a1)...

The inner nacreous layer of gastropod mollusc Trochus niloticus is composed of ∼95 wt% planar arrays of polygonal aragonite-based tablets (∼8 μm wide, ∼0.9 μm thick, stacked ∼40 nm apart) and ∼5 wt% biomacromolecules. High-resolution tapping mode atomic force microscope images enabled nanoscale resolution of fractured tablet cross-sections, the organic component, and deformation of individual nanoasperities on top of tablet surfaces. Nanoindentation was performed on individual nacre tablets and the elastic modulus E and yield stress σy were reduced from elastic-plastic finite element simulations yielding E = 92 GPa, σy = 11 GPa (freshly cleaved samples) and E = 79 GPa, σy = 9 GPa (artificial seawater soaked samples). Images of the indents revealed extensive plastic deformation with a clear residual indent and surrounding pileup.

Corresponding author
b) Address all correspondence to this author. e-mail:
Hide All
1Jackson A.P., Vincent J.F.V. and Turner R.M.: The mechanical design of nacre. Proc. R. Soc. London B Biol. Sci. 234, 415 (1988).
2Weiner S. and Addadi L.: Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689 (1997).
3Wang R.Z., Suo Z., Evans A.G., Yao N. and Aksay I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).
4Menig R., Meyers M.H., Meyers M.A. and Vecchio K.S.: Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 (2000).
5Jackson A.P., Vincent J.F.V. and Turner R.M.: Comparison of nacre with other ceramic composites. J. Mater. Sci., 25, 3173 (1990).
6Currey J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. London B Biol. Sci. 196(1125), 443 (1977).
7Erban H.K.: On the structure and growth of the nacreous tablets in gastropods. Biomineralisation 7, 14 (1974).
8Taylor J.D., Kennedy W.J. and Hall A.: Shell structure and minerology of the bivalvia: Introduction Nuculacea-Trigonacea. Bull. Brit. Museum Natural. History Zool. Suppl. 3, 1 (1969).
9Bevan D.J.M., Rossmanith E., Mylrea D.K., Ness S.E., Taylor M.R. and Cuff C.: On the structure of aragonite— Lawrence Bragg revisited. Acta Crystallogr. B. Struct. Sci. B 58, 448 (2002).
10Mutvei H.: Ultrastructural characteristics of the nacre in some gastropods. Zool. Scr. 7, 287 (1978).
11Li X., Chang W-C., Chao Y.J., Wang R. and Chang M.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).
12Bevelander G. and Nakahara H.: An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calc. Tiss. Res. 3, 84 (1969).
13Wada K.: Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralisation 6, 141 (1972).
14Mutvei H.: On the internal structures of the nacreous tablets in molluscan shells. Scanning Electron Microsc. 2, 457 (1979).
15Schäffer T.E., Ionescu-Zanetti C., Proksch R., Fritz M., Walters D.A., Almqvist N., Zaremba C.M., Belcher A.M., Smith B.L., Stucky G.D., Morse D.E. and Hansma P.K.: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 (1997).
16Manne S., Zaremba C.M., Giles R., Huggins L., Walters D.A., Belcher A., Morse D.E., Stucky G.D., Didymus J.M., Mann S. and Hansma P.K.: Atomic force microscopy of the nacreous layer in mollusc shells. Proc. R. Soc. London B Bio. Sci. 256, 17 (1994).
17Mutvei H.: Ultrastructural studies on cephalopod shells, Part 1: The septa and siphonal tube in Nautilus. Bull. Geol. Inst. Univer. Upsala (N.S.) 3, 237 (1972).
18Shen X., Belcher A.M., Hansma P.K., Stucky G.D. and Morse D.E.: Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens J. Bio. Chem. 272, 32472 (1997).
19Zhang Y., Xie L., Meng Q., Jiang T., Pu R., Chen L. and Zhang R.: A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp. Biochem. Physiol. Part B 135, 565 (2003).
20Blank S., Arnold M., Khoshnavaz S., Treccani L., Kuntz M., Mann K., Grathwohl G. and Fritz M.: The nacre protein perlucin nucleates growth of calcium carbonate crystals. J. Microsc. 212, 280 (2003).
21Song F., Soh A.K. and Bai Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 (2003).
22Song F., Zhang X.H. and Bai Y.L.: Microstructure and characteristics in the organic matrix layers of nacre. J. Mater. Res. 17, 1567 (2002).
23Wustman B.A., Morse D.E. and Evans J.S.: Structural analyses of polyelectrolyte sequence domains within the adhesive elastomeric biomineralization protein lustrin A. Langmuir 18, 9901 (2002).
24Weiner S. and Traub W.: Macromolecules in mollusc shells and their functions in biomineralization. Philos. Trans. R. Soc. London, Series B Bio. Sci. 304, 425 (1984).
25Weiss I.M., Kaufmann S., Mann K. and Fritz M.: Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata Biochem. Biophys. Res. Commun. 267, 17 (2000).
26Weiss I.M., Renner C., Strigl M.G. and Fritz M.: A simple and reliable method for the determination and localization of chitin in abalone nacre. Chem. Mater. 14, 3252 (2002).
27Pereira-Mouriès L., Almeida M., Ribeiro C., Peduzzi J., Barthélemy M-J., Milet C. and Lopez E.: Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima Eur. J. Biochem. 269, 4994 (2002).
28Bédouet L., Schuller M.J., Marin F., Milet C., Lopez E. and Giraud M.: Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: Extraction and partial analysis of nacre proteins. Comp. Biochem. Physiol. Part B: Biochem. Mol. Bio. 128, 389 (2001).
29Bowen C.E. and Tang H.: Conchiolin-protein in aragonite shells of mollusks. Comp. Biochem. Physiol. Part A: Phys. 115A, 269 (1996).
30Weiner S. and Traub W.: X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett. 111, 311 (1980).
31Weiner S., Talmon Y. and Traub W.: Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase. Int. J. Biol. Macromol. 5, 325 (1983).
32Watabe N.: Studies on shell formation XI. Crystal-matrix relationships in the inner layers of mollusk shells. J. Ultrastruct. Res. 12, 351 (1965).
33Belcher A.M., Wu X.H., Christensen R.J., Hansma P.K., Stucky G.D. and Morse D.E.: Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56 (1996).
34Wang R.Z., Wen H.B., Cui F.Z., Zhang H.B. and Li H.D.: Observations of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299 (1995).
35Handbook of Elastic Properties of Solids, Liquids and Gases, edited by Levy M., Bass H., Stern R., Every A.G., and Sachse W. (Academic, San Diego, CA, 2001).
36Currey J.D. and Taylor J.D.: The mechanical behavior of some molluscan hard tissues. J. Zool. London 173, 395 (1974).
37Evans A.G., Suo Z., Wang R.Z., Aksay I.A., He M.Y. and Hutchinson J.W.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).
38Katti D.R., Pradhan S.M. and Katti K.S.: Modeling the organic-inorganic interfacial nanoasperities in a model bio-nanocomposite, nacre. Rev. Adv. Mater. Sci. 6, 162 (2004).
39Ji B. and Gao H.: A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater. Sci. Eng. A 366, 96 (2004).
40Qi H.J., Bruet B.J.F., Palmer J.S., Ortiz C. and Boyce M.C. Micromechanics and macromechanics of the tensile deformation of nacre, in Mechanics of Biological Tissues, Proceedings of International Union of Theoretical and Applied Mechanics (IUTAM), edited by Holzapfel G.A. and Ogden R.W. (Springer Verlag, Graz, Austria, 2005), p. 175.
41Qi H.J., Ortiz C. and Boyce M.C. Protein forced unfolding and its effects on the finite deformation stress-strain behavior of biomacromolecular solids, in Structure and Mechanical Behavior of Biological Materials, edited by Fratzl P., Landis W.J., Wang R., and Silver F.H. (Mater. Res. Soc. Symp. Proc., 874, Warrendale, PA, 2005), L4.31.
42Barthelat F. and Espinosa H.D.: Elastic properties of nacre aragonite tablets, presented at the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Session 68, Paper 187, Charlotte, North Carolina, 2003; and F. Barthelat and H.D. Espinosa: Mechanical properties of nacre constituents: An inverse method approach, in Mechanical Properties of Bioinspired and Biological Materials, edited by Viney C., Katti K., Ulm F-J., and Hellmich C. (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), Y.7.5.1, p. 67.
43Hanson M.T.: The elastic field for spherical hertzian contact including sliding friction for transverse isotropy. J. Tribology 114, 606 (1992).
44Oliver W.C. and Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
45Sheiko S.S. and Moller M.: Visualization of macromolecules: A first step to manipulation and controlled response. Chem. Rev. 101, 4099 (2001).
46Harris D.C.: Quantitative Chemical Analysis, 4th ed. (W. H. Freeman and Company, New York, 1995.).
47Arruda E.M. and Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber-elastic materials. J. Mech. Phys. Solids 41, 389 (1993).
48Bischoff J.E., Arruda E.M. and Grosh K.: Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J. Appl. Mech. 69, 198 (2002).
49Bischoff J.E., Arruda E.M. and Grosh K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570 (2002).
50Skedros J.G., Bloebaum R.D., Bachus K.N. and Boyce T.M.: The meaning of graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 27, 47 (1993).
51Lloyd G.E.: Atomic number and crystallographic contrast images with the SEM: A review of backscattered electron techniques. Min. Mag. 51, 3 (1987).
52Kotha S.P., Li Y. and Guzelsu N.: Micromechanical model of nacre tested in tension. J. Mater. Sci. 36, 2001 (2001).
53Smith B.L., Schäffer T.E., Viani M., Thompson J.B., Frederick N.A., Kindt J., Belcher A., Stucky G.D., Morse D.E. and Hansma P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).
54Kontoyannis C.G. and Vagenas N.V.: Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125, 251 (2000).
55 Power Diffraction File (PDF) 00-041-1475 (International Centre for Diffraction Data; Newtown Square, PA).
56Balmain J., Hannoyer B. and Lopez E.: Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima J. Biomed. Mater. Res. 48(5), 749 (1999).
57Feng Q.L., Su X.W., Cui F.Z. and Li H.D.: Crystallographic orientation domains of flat tablets in nacre. Biomimetics 3, 159 (1995).
58Feng Q.L., Li H.B., Cui F.Z., Li H.D. and Kim T.N.: Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell J. Mater. Sci. Lett. 18, 1547 (1999).
59Feng Q.L., Pu G., Pei Y., Cui F.Z., Li H.D. and Kim T.N.: Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell. J. Cryst. Growth 216, 459 (2000).
60Sturges H.: The choice of a class interval. J. Am. Statist. Assoc. 21, 65 (1926).
61Scott D.W.: On optimal and data-based histograms. Biometrika 66, 605 (1979).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 263 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th December 2017. This data will be updated every 24 hours.