Skip to main content
    • Aa
    • Aa

Nitrogen-doped titanium oxide microrods decorated with titanium oxide nanosheets for visible light photocatalysis

  • Jum Suk Jang, Eun Sun Kim (a1), Hyun Gyu Kim (a2), Sang Min Ji, Youngkwon Kim and Jae Sung Lee (a1)...

Nitrogen-doped titania with a unique two-level hierarchical structure and visible light photocatalytic activity is reported. Thus, nitrogen-doped titanium oxide microrods decorated with N-doped titanium oxide nanosheets were synthesized by a hydrothermal reaction in NH4OH and postcalcination. During the calcination, the in situ incorporation of nitrogen atoms of ammonium ion into titania lattice was accompanied by the structural evolution from titanate to anatase titania. The morphological and structural evolution was monitored by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Raman, Fourier transform infrared (FTIR), x-ray absorption near edge structure (XANES), x-ray photoelectron spectroscopy (XPS), and adsorption isotherms. The N-doping brought visible light absorption, and the material exhibited high photocatalytic activity in the decomposition of Orange II under visible light irradiation (λ ≥ 400 nm), especially when it was loaded with 1 wt% Pt as a cocatalyst.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1. C.C. Chen , A.B. Herhold , C.S. Johnson , A.P. Alivisatos Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398(1997)

2. S. Mann , G.A. Ozin Synthesis of inorganic materials with complex form. Nature 382, 313(1996)

3. H. Tokudome , M. Miyauchi Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Ed. 44, 1974(2005)

4. A.P. Alivisatos Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226(1996)

5. A. Riss , T. Berger , H. Grothe , J. Bernardi , O. Diwald , E. Knözinger Chemical control of photoexcited states in titanate nanostructures. Nano Lett. 7, 313(2007)

6. T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , K. Niihara Formation of titanium oxide nanotube. Langmuir 14, 3160(1998)

7. X. Sun , X. Chen , Y. Li Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg. Chem. 41, 4996(2002)

8. Q. Chen , W. Zhou , G. Du , L-M. Peng Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208(2002)

9. E. Horváth , A. Kukovecz , Z. Kónya , I. Kiricsi Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 19, 927(2007)

10. R. Ma , K. Fukuda , T. Sasaki , M. Osada , Y. Bando Structural features of titanate nanotubes/nanobelts revealed by Raman, x-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 109, 6210(2005)

11. G.H. Du , Q. Chen , R.C. Che , Z.Y. Yuan , L-M. Peng Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702(2001)

12. J.C. Kim , J. Choi , Y.B. Lee , J.H. Hong , J.I. Lee , J.W. Yang , W.I. Lee , N.H. Hur Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun. (Camb.) 5024(2006)

13. L. Torrente-Murciano , A.A. Lapkin , D.V. Bavykin , F.C. Walsh , K. Wilson Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. J. Catal. 245, 272(2007)

14. S.H. Lim , J. Luo , Z. Zhong , W. Ji , J. Lin Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124(2005)

15. M. Wei , Z-m. Qi , M. Ichihara , I. Honma , H. Zhou Ultralong single-crystal TiO2–B nanowires: Synthesis and electrochemical measurements. Chem. Phys. Lett. 424, 316(2006)

16. Y. Lan , X.P. Gao , H.Y. Zhu , Z.F. Zheng , T.Y. Yan , F. Wu , S.P. Ringer , D.Y. Song Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310(2005)

17. M. Qamar , C.R. Yoon , H.J. Oh , D.H. Kim , J.H. Jho , K.S. Lee , W.J. Lee , H.G. Lee , S.J. Kim Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17, 5922(2006)

18. E. Morgado Jr., M.A.S. Abreu , G.T. Moure , B.A. Marinkovic , P.M. Jardim , A.S. Araujo Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 19, 665(2007)

19. H.Y. Zhu , Y. Lan , X.P. Gao , S.P. Ringer , Z.F. Zheng , D.Y. Song , J.C. Zhao Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 127, 6730(2005)

20. B. Poudel , W.Z. Wang , C. Dames , J.Y. Huang , S. Kunwar , D.Z. Wang , D. Banerjee , G. Chen , Z.F. Ren Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16, 1935(2005)

21. S. Zhang , L-M. Peng , Q. Chen , G.H. Du , G. Dawson , W.Z. Zhou Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 256103(2003)

22. R. Asahi , T. Morikawa , T. Ohwaki , K. Aoki , Y. Taga Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269(2001)

23. J.S. Lee Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal. Surv. Asia 9, 217(2006)

24. C.H. Rhee , J.S. Lee , S.H. Chung Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. J. Mater. Res. 20, 3011(2005)

25. C.H. Rhee , S.W. Bae , J.S. Lee Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem. Lett. 34, 660(2005)

26. J.S. Jang , H.G. Kim , S.M. Ji , S.W. Bae , J.H. Jung , B.H. Shon , J.S. Lee Formation of crystalline TiO2−xNx and its photocatalytic activity. J. Solid State Chem. 179, 1067(2006)

27. M. Kruk , M. Jaroniec Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267(1997)

28. A.L. Ankudinov , C.E. Bouldin , J.J. Rehr , J. Sims , H. Hung Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B 65, 104107(2002)

29. M. Newville IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322(2001)

30. S.H. Choi , J.S. Lee XAFS characterization of Pt–Mo bimetallic catalysts for CO hydrogenation. J. Catal. 167, 364(1997)

31. E.D. Park , S.H. Choi , J.S. Lee Active states of Pd and Cu in carbon-supported wacker-type catalysts for low-temperature CO oxidation. J. Phys. Chem. B 104, 5586(2000)

33. W.B. Kim , S.H. Choi , J.S. Lee Quantitative analysis of Ti–O–Si and Ti–O–Ti bonds in Ti–Si binary oxides by the linear combination of XANES. J. Phys. Chem. B 104, 8670(2000)

34. J.S. Lee , W.B. Kim , S.H. Choi Linear combination of XANES for quantitative analysis of Ti–Si binary oxides. J. Synchrotron Radiat. 8, 163(2001)

35. K. Fukuda , I. Nakai , C. Oishi , M. Nomura , M. Harada , Y. Yasuo , T. Sasaki Nanoarchitecture of semiconductor titania nanosheets revealed by polarization-dependent total reflection fluorescence x-ray absorption fine structure. J. Phys. Chem. B 108, 13088(2004)

36. H.C. Choi , H-J. Ahn , Y.M. Jung , M.K. Lee , H.J. Shin , S.B. Kim , Y-E. Sung Characterization of the structures of size-selected TiO2 nanoparticles using x-ray absorption spectroscopy. Appl. Spectrosc. 58, 598(2004)

37. K.S.W. Sing , D.H. Evertt , R.A.W. Haul , L. Moscou , R.A. Pierotti , J. Rouquerol , T. Siemieniewska Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603(1985)

38. N.C. Saha , H.G. Tomkins Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072(1992)

39. J.L. Gole , J.D. Stout , C. Burda , Y. Lou , X. Chen Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230(2004)

40. E. György , A.A. Pérez del Pino , P. Serra , J.L. Morenza Surface nitridation of titanium by pulsed Nd:YAG laser irradiation. Appl. Surf. Sci. 186, 130(2002)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.