Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T14:06:30.028Z Has data issue: false hasContentIssue false

Novel Cu/Si composites: A sol-gel-derived Al2O3 film as barrier to control interfacial reaction

Published online by Cambridge University Press:  31 January 2011

Hui Cai
Affiliation:
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Debao Tong
Affiliation:
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Yaping Wang*
Affiliation:
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Xiaoping Song
Affiliation:
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Bingjun Ding
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
*
a)Address all correspondence to this author. e-mail: ypwang@mail.xjtu.edu.cn
Get access

Abstract

Cu/Si composite may be a novel and high-performance material for electronic packaging if the advantages of copper and silicon components are preserved. Because of the severe diffusional reaction between copper and silicon at elevated temperature, efforts are impeded to achieve a bulk Cu/Si composite. Here, by coating a sol-gel-derived Al2O3 film on the Si particle surface, the bulk Cu/Si composites were obtained by the powder metallurgy method. In the prepared Cu/Si composite, Cu forms a continuous matrix while Si particles are homogeneously dispersed in Cu matrix. High-resolution transmission electron microscopy observation indicates that only weak interfacial reaction occurs at the Cu/Al2O3/Si interface and forms a narrow interfacial reaction zone. The thermal diffusivity of the composite at 25 °C is about 30.6 mm2 s−1, over 10 times larger than that of Cu/Si material without Al2O3 film.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hinode, K., Takeda, K., Kondo, S.: Abnormal room-temperature oxidation of silicon in the presence of copper. J. Vac. Sci. Technol., A 20, 1653 (2002)CrossRefGoogle Scholar
2.Yao, Y., Fan, S.: Si nanowires synthesized with Cu catalyst. Mater. Lett. 61, 177 (2007)CrossRefGoogle Scholar
3.Chromik, R.R., Neils, W.K., Cotts, E.J.: Thermodynamic and kinetic study of solid state reactions in the Cu–Si system. J. Appl. Phys. 86, 4273 (1999)CrossRefGoogle Scholar
4.Yang, J., Zhang, H.B., Tao, K., Fan, Y.D.: Phase transition of Cu/Si system obtained by ion-beam-assisted deposition. Appl. Phys. Lett. 64, 1800 (1994)CrossRefGoogle Scholar
5.Hymes, S., Kumar, K.S., Murarka, S.P., Ding, P.J., Wang, W., Lanford, W.A.: Thermal stability of copper silicides passivation layers in copper-based multilevel interconnects. J. Appl. Phys. 83, 4507 (1998)CrossRefGoogle Scholar
6.Lee, Y.F., Lee, S.L.: Effects of Al additive on the mechanical and physical properties of silicon reinforced copper matrix composites. Scr. Mater. 41, 773 (1999)CrossRefGoogle Scholar
7.Zacharatos, F., Nassiopoulou, A.G.: Copper-filled macroporous Si and cavity underneath for microchannel heat sink technology. Phys. Status Solidi A 205, 2513 (2008)CrossRefGoogle Scholar
8.Laurila, T., Zeng, K.J., Kivilahti, J.K.: Failure mechanism of Ta diffusion barrier between Cu and Si. J. Appl. Phys. 88, 3377 (2000)CrossRefGoogle Scholar
9.Song, S.X., Liu, Y.Z., Mao, D.L., Ling, H.Q., Li, M.: Diffusion barrier performances of thin Mo, Mo–N and Mo/Mo–N films between Cu and Si. Thin Solid Films 476, 142 (2005)CrossRefGoogle Scholar
10.Laurila, T., Zeng, K.J., Kivilahti, J.K., Molarius, J., Suni, I.: Amorphous layer formation at the TaC/Cu interface in the Si/TaC/Cu metallization system. Appl. Phys. Lett. 80, 938 (2002)CrossRefGoogle Scholar
11.Noya, A., Takeyama, M.B., Sase, T.: Diffusion-barrier properties of Ta1–xWx alloy films and silicidation-induced Cu penetration in Cu/Si contacts. J. Vac. Sci. Technol., B 23, 280 (2005)CrossRefGoogle Scholar
12.Li, C., Hsieh, J.H., Tang, Z.Z.: Study on the amorphous Ta–Zr films as diffusion barrier in Cu metallization. J. Vac. Sci. Technol., A 26, 980 (2008)CrossRefGoogle Scholar
13.Lin, T.Y., Cheng, H.Y., Chin, T.S., Chiu, C.F., Fang, J.S.: 5-nm-thick TaSiC amorphous films stable up to 750 °C as a diffusion barrier for copper metallization. Appl. Phys. Lett. 91, 152908 (2007)CrossRefGoogle Scholar
14.Laurila, T., Zeng, K.J., Kivilahti, J.K., Molarius, J., Suni, L.: TaC as a diffusion barrier between Si and Cu. J. Appl. Phys. 91, 5391 (2002)CrossRefGoogle Scholar
15.Chang, S.Y., Chen, D.S.: 10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900 °C. Appl. Phys. Lett. 94, 231909 (2009)CrossRefGoogle Scholar
16.Palkar, V.R., Thapa, D., Multani, M.S., Malghan, S.G.: Densification of nanostructured alumina assisted by rapid nucleation of α-alumina. Mater. Lett. 36, 235 (1998)CrossRefGoogle Scholar
17.Chen, Y.C., Ai, X., Huang, C.Z., Wang, B.Y.: Preparation of α-alumina coated carbide tools by the sol-gel process. Mater. Sci. Eng., A 288, 19 (2000)CrossRefGoogle Scholar
18.Kirszensztejn, P., Przekop, R., Szymkowiak, A., Maćkowska, E., Gaca, J.: Preparation of MgO–Al2O3 binary gel system with mesoporous structure. Microporous Mesoporous Mater. 89, 150 (2006)CrossRefGoogle Scholar
19.Ruhi, G., Modi, O.P., Sinha, A.S.K., Singh, I.B.: Effect of sintering temperatures on corrosion and wear properties of sol-gel alumina coatings on surface pre-treated mild steel. Corros. Sci. 50, 639 (2008)CrossRefGoogle Scholar
20.Ecsedi, Z., Lazău, I., Păcurariu, C.: Microstructural analysis of the effects of polyvinyl alcohol content on the porosity of sol–gel derived alumina ceramics. Microporous Mesoporous Mater. 118, 453 (2009)CrossRefGoogle Scholar
21.Levin, L., Atzmon, Z., Katsman, A., Werber, T.: The mechanisms of phase transformation in diffusion couples of the Cu–Si system. Mater. Chem. Phys. 40, 56 (1995)CrossRefGoogle Scholar
22.Lostetter, A.B., Barlow, F., Elshabini, A.: An overview to integrated power module design for high power electronics packaging. Microelectron. Reliab. 40, 365 (2000)CrossRefGoogle Scholar
23.Hong, S.Q., Comrie, C.M., Russell, S.W., Mayer, J.W.: Phase formation in Cu–Si and Cu–Ge. J. Appl. Phys. 70, 3655 (1991)CrossRefGoogle Scholar
24.Lee, S.B., Choi, D.K., Phillipp, F., Jeon, K.S., Kim, C.K.: In situ high-resolution transmission-electron-microscopy study of interfacial reactions of Cu thin films on amorphous silicon. Appl. Phys. Lett. 88, 083117 (2006)CrossRefGoogle Scholar
25.Liu, C.J., Jeng, J.S., Chen, J.S., Lin, Y.K.: Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO2. J. Vac. Sci. Technol., B 20, 2361 (2002)CrossRefGoogle Scholar
26.Erdélyi, G., Langer, G., Nyéki, J., Kövér, L., Tomastik, C., Werner, W.S.M., Csik, A., Stoeri, H., Beke, D.L.: Investigation of Ta grain-boundary diffusion in copper by means of Auger electron spectroscopy. Thin Solid Films 459, 303 (2004)CrossRefGoogle Scholar
27.Li, S., Dong, Z.L., Latt, K.M., Park, H.S., White, T.: Formation of Cu diffusion channels in Ta layer of a Cu/Ta/SiO2/Si structure. Appl. Phys. Lett. 80, 2296 (2002)CrossRefGoogle Scholar
28.Takeyama, M., Noya, A., Fukuda, T.: Thermal stability of Cu/W/Si contact systems using layers of Cu(111) and W(110) preferred orientations. J. Vac. Sci. Technol., A 15, 415 (1997)CrossRefGoogle Scholar
29.Rha, S.K., Lee, W.J., Lee, S.Y., Hwang, Y.S., Lee, Y.J., Kim, D.I., Kim, D.W., Chun, S.S., Park, C.O.: Improved TiN film as a diffusion barrier between copper and silicon. Thin Solid Films 320, 134 (1998)CrossRefGoogle Scholar