Skip to main content Accessibility help
×
Home

Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures

  • Aditya Srinivasan Tirunilai (a1), Jan Sas (a2), Klaus-Peter Weiss (a2), Hans Chen (a1), Dorothée Vinga Szabó (a3), Sabine Schlabach (a3), Sebastian Haas (a4), David Geissler (a5), Jens Freudenberger (a6), Martin Heilmaier (a1) and Alexander Kauffmann (a1)...

Abstract

This contribution presents a comprehensive analysis of the low temperature deformation behavior of CoCrFeMnNi on the basis of quasistatic tensile tests at temperatures ranging from room temperature down to 4.2 K. Different deformation phenomena occur in the high-entropy alloy in this temperature range. These include (i) serrated plastic flow at certain cryogenic temperatures (4.2 K/8 K), (ii) deformation twinning (4.2 K/8 and 77 K), and (iii) dislocation slip (active from 4.2 K up to room temperature). The importance of deformation twinning for a stable work-hardening rate over an extended stress range as well as strain range has been addressed through the use of comprehensive orientation imaging microscopy studies. The proposed appearance of ε-martensite as well as a previously uninvestigated route of analysis, essentially a quantitative time-dependent, strain-dependent, and stress-dependent evaluation of the serrated plastic flow in CoCrFeMnNi is provided.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: alexander.kauffmann@kit.edu

References

Hide All
1.Yeh, J-W., Chen, Y-L., Lin, S-J., and Chen, S-K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 19 (2007).
2.Tsai, M-H.: Physical properties of high entropy alloys. Entropy 15, 53385345 (2013).
3.Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).
4.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).
5.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).
6.Yeh, J-W.: Physical metallurgy of high-entropy alloys. JOM 67, 22542261 (2015).
7.Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 11421147 (2015).
8.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183202 (2016).
9.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213218 (2004).
10.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 57435755 (2013).
11.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).
12.Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 17801789 (2013).
13.Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., and Vitos, L.: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 4447 (2015).
14.Allain, S., Chateau, J-P., Bouaziz, O., Migot, S., and Guelton, N.: Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng., A 387–389, 158162 (2004).
15.Saeed-Akbari, A., Imlau, J., Prahl, U., and Bleck, W.: Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall. Mater. Trans. A 40, 30763090 (2009).
16.Cooman, B.C.D., Kwon, O., and Chin, K-G.: State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 28, 513527 (2012).
17.Laplanche, G., Kostka, A., Horst, O., Eggeler, G., and George, E.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152163 (2016).
18.Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 817 (2015).
19.Abuzaid, W. and Sehitoglu, H.: Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater. Charact. 129, 288299 (2017).
20.Sun, S., Tian, Y., Lin, H., Yang, H., Dong, X., Wang, Y., and Zhang, Z.: Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng., A 712, 603607 (2018).
21.Geissler, D., Freudenberger, J., Kauffmann, A., Krautz, M., Klauss, H., Voss, A., Eickemeyer, J., and Schultz, L.: Appearance of dislocation-mediated and twinning-induced plasticity in an engineering-grade FeMnNiCr alloy. Acta Mater. 59, 77117723 (2011).
22.Pustovalov, V.V.: Serrated deformation of metals and alloys at low temperatures. Low Temp. Phys. 34, 683723 (2008).
23.Blewitt, T.H., Coltman, R.R., and Redman, J.K.: Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651660 (1957).
24.Basinski, Z.S.: The instability of plastic flow of metals at very low temperatures. Proc. R. Soc. A 240, 229242 (1957).
25.Ogata, T., Ishikawa, K., Hiraga, K., Nagai, K., and Yuri, T.: Temperature rise during the tensile test in superfluid helium. Cryogenics 25, 444446 (1985).
26.Aono, Y., Kuramoto, E., and Kitajima, K.: Orientation dependence of slip in niobium single crystals at 4.2 and 77 K. Scripta Metall. 18, 201205 (1984).
27.Haasen, P.: Plastic deformation of nickel single crystals at low temperatures. Philos. Mag. A 3, 344418 (1958).
28.Ishikawa, K.: Tensile behaviour of Fe–13% Ni–3% Mo alloys deformed in liquid. J. Mater. Sci. Lett. 5, 377378 (1986).
29.Moskalenko, V., Natsik, V., and Kovaleva, V.: Low temperature anomalies of Ti plasticity resulting from inertial properties of dislocation motion. Mater. Sci. Eng., A 309–310, 173177 (2001).
30.Carroll, R., Lee, C., Tsai, C-W., Yeh, J-W., Antonaglia, J., Brinkman, B.A.W., LeBlanc, M., Xie, X., Chen, S., Liaw, P.K., and Dahmen, K.A.: Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 5, 16997 (2015).
31.Zhang, Y., Liu, J.P., Chen, S.Y., Xie, X., Liaw, P.K., Dahmen, K.A., Qiao, J.W., and Wang, Y.L.: Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358460 (2017).
32.Nelson, J. and Riley, D.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160 (1945).
33.Kauffmann, A., Freudenberger, J., Klauß, H., Klemm, V., Schillinger, W., Sarma, V.S., and Schultz, L.: Properties of cryo-drawn copper with severely twinned microstructure. Mater. Sci. Eng., A 588, 132141 (2013).
34.Haas, S., Mosbacher, M., Senkov, O.N., Feuerbacher, M., Freudenberger, J., Gezgin, S., Völkl, R., and Glatzel, U.: Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range. Acta Mater. (2018). (submitted).
35.Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).
36.Hwang, J.S., Lin, K.J., and Tien, C.: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum. 68, 94101 (1997).
37.Bagrets, N., Goldacker, W., Schlachter, S.I., Barth, C., and Weiss, K-P.: Thermal properties of 2G coated conductor cable materials. Cryogenics 61, 814 (2014).
38.Sas, J., Weiss, K-P., and Bagrets, N.: CryoMaK—The overview of cryogenic testing facilities in Karlsruhe. Acta Metall. Slovaca 21, 330338 (2015).
39.Bhattacharjee, P., Sathiaraj, G., Zaid, M., Gatti, J., Lee, C., Tsai, C-W., and Yeh, J-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544552 (2014).
40.Gludovatz, B., George, E.P., and Ritchie, R.O.: Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 67, 22622270 (2015).
41.Laplanche, G., Horst, O., Otto, F., Eggeler, G., and George, E.: Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J. Alloys Compd. 647, 548557 (2015).
42.Wu, Z., Bei, H., Otto, F., Pharr, G., and George, E.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131140 (2014).
43.Otto, F., Dlouhý, A., Pradeep, K., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 4052 (2016).
44.Smith, T., Hooshmand, M., Esser, B., Otto, F., McComb, D., George, E., Ghazisaeidi, M., and Mills, M.: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352363 (2016).
45.Kauffmann, A., Freudenberger, J., Klauß, H., Schillinger, W., Sarma, V.S., and Schultz, L.: Efficiency of the refinement by deformation twinning in wire drawn single phase copper alloys. Mater. Sci. Eng., A 624, 7178 (2015).
46.Kauffmann, A., Freudenberger, J., Geissler, D., Yin, S., Schillinger, W., Sarma, V.S., Bahmanpour, H., Scattergood, R., Khoshkhoo, M., Wendrock, H., Koch, C., Eckert, J., and Schultz, L.: Severe deformation twinning in pure copper by cryogenic wire drawing. Acta Mater. 59, 78167823 (2011).
47.Borisova, D., Klemm, V., Martin, S., Wolf, S., and Rafaja, D.: Microstructure defects contributing to the energy absoprtion in CrMnNi TRIP steels. Adv. Eng. Mater. 15, 571582 (2013).
48.Martin, S., Ullrich, C., Šimek, D., Martin, U., and Rafaja, D.: Stacking fault model of epsilon-martensite and its DIFFaX implementation. J. Appl. Crystallogr. 44, 779787 (2011).
49.Geissler, D., Freudenberger, J., Kauffmann, A., Martin, S., and Rafaja, D.: Assessment of the thermodynamic dimension of the stacking fault energy. Philos. Mag. 94, 29672979 (2014).
50.Adler, P.H., Olson, G.B., and Owen, W.S.: Strain hardening of hadfield manganese steel. Metall. Mater. Trans. A 17, 17251737 (1986).
51.Olson, G.B. and Cohen, M.: A general mechanism of martensitic nucleation: Part I. General concepts and the fcc textrightarrow HCP transformation. Metall. Trans. A 7, 18971904 (1976).
52.Jin, K., Mu, S., An, K., Porter, W., Samolyuk, G., Stocks, G., and Bei, H.: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys. Mater. Des. 117, 185192 (2017).
53.Basinski, Z.S.: The instability of plastic flow of metals at very low temperatures. II. Aust. J. Phys. 13, 354358 (1960).
54.Parkhomenko, T.A. and Pustovalov, V.V.: The low-temperature yield stress anomaly in metals and alloys. Phys. Status Solidi A 74, 1142 (1982).

Keywords

Related content

Powered by UNSILO

Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures

  • Aditya Srinivasan Tirunilai (a1), Jan Sas (a2), Klaus-Peter Weiss (a2), Hans Chen (a1), Dorothée Vinga Szabó (a3), Sabine Schlabach (a3), Sebastian Haas (a4), David Geissler (a5), Jens Freudenberger (a6), Martin Heilmaier (a1) and Alexander Kauffmann (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.