Skip to main content

Physical, fluid dynamic and mechanical properties of alumina gel-cast foams manufactured using agarose or ovalbumin as gelling agents

  • Murilo Daniel de Mello Innocentini (a1), Victor Dias Rasteira (a1), Marek Potoczek (a2), Anna Chmielarz (a2) and Elwira Kocyło (a2)...

Alumina gel-cast foams were manufactured in a broad total porosity range (43–86%) by using agarose or ovalbumin as gelling agents. The foams were examined in terms of microstructural, permeability, and mechanical properties. For the achieved open porosity level (19–85%), the mean cell size (19–375 µm), and mean window size (8–77 µm) of the alumina foams manufactured using ovalbumin were slightly wider than those obtained using agarose (34–262 µm and 18–33 µm, respectively). By using different contents of agarose (0.3–1 wt%) or albumin (5 wt%) and solids (30–45.9 wt%), it was possible to vary the foaming yield from 1.6 to 4.4 and produce bodies with a very wide permeability level that included several classes of porous ceramics. Darcian (k 1) and non-Darcian (k 2) permeability coefficients displayed values in the range 3.2 × 10−18 to 4.3 × 10−9 m2 and 1.8 × 10−18 to 6.5 × 10−5 m respectively. Compressive strength of bodies was dependent upon the porosity level, with a variation of 8.5–149.7 MPa.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Paolo Colombo

Hide All
1. Scheffler M. and Colombo P., eds.: Cellular Ceramics: Structure, Manufacture, Properties and Applications (Wiley-VCH, Weinheim, 2005).
2. Gibson L.J. and Ashby M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1999); pp. 1550.
3. Zhang R., He R., Zhou W., Wang Y., and Fang D.: Design and fabrication of porous ZrO2/(ZrO2 + Ni) sandwich ceramics with low thermal conductivity and high strength. Mater. Des. 14, 16 (2014).
4. Schwartzwalder K. and Somers A.V.: Method of making porous ceramics articles. U.S. Patent No. 3 090 094, 1963.
5. Sepulveda P. and Binner J.G.P.: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19(12), 20592066 (1999).
6. Komarneni S., Pach L., and Pidugu R.: Porous-alumina ceramics using bohemite and rice flour. Mater. Res. Soc. Symp. Proc. 371, 285290 (1995).
7. Colombo P. and Hellmann J.R.: Ceramic foams from preceramic polymers. Mater. Res. Innovations 6, 260272 (2002).
8. Fujiu T., Messing G.L., and Huebner W.: Processing and properties of cellular silica synthesized by foaming sol–gels. J. Am. Ceram. Soc. 73, 8590 (1990).
9. Green D.J.: Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres. J. Am. Ceram. Soc. 68, 403409 (1985).
10. Innocentini M.D.M., Sepulveda P., Salvini V.R., and Pandolfelli V.C.: Permeability and structure of cellular ceramics: A comparison between two preparation techniques. J. Am. Ceram. Soc. 81(12), 33493352 (1998).
11. Brezny R. and Green D.J.: Fracture behavior of open-cell ceramics. J. Am. Ceram. Soc. 72(7), 11451152 (1989).
12. Ortega F.S., Sepulveda P., and Pandolfelli V.C.: Monomer systems for the gelcasting of foams. J. Eur. Ceram. Soc. 22, 13951401 (2002).
13. Szafran M., Szudarska A., and Bednarek P.: New low-toxic water-soluble monomers for gelcasting of ceramic powders. Adv. Sci. Technol. 62, 163168 (2010).
14. Szudarska A., Mizerski T., and Szafran M.: Galactose monoacrylate as a new monomer in gelcasting process. Arch. Metall. Mater. 56, 12111215 (2011).
15. Dhara S., Pradhan M., and Bhargava P.: Nature inspired novel processing routes for ceramic foams. Adv. Appl. Ceram. 104(1), 921 (2005).
16. Dhara S. and Bhargava P.: A simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86(10), 16451650 (2003).
17. Lemos A.F. and Ferreira J.M.F.: The valence of egg white for designing smart porous biomaterials: As foaming and consolidation agent. Key Eng. Mater. 254–256, 10451050 (2004).
18. Garrn I., Reetz C., Brandes N., Kroh J.W., and Schubert H.: Clot-forming: The use of proteins as binders for producing ceramic foams. J. Eur. Ceram. Soc. 24, 579587 (2004).
19. Prabhakaran K., Gokhale N.M., Sharma S.C., and Lal R.: A novel process for low-density alumina foams. J. Am. Ceram. Soc. 88, 26002603 (2005).
20. Mouazer R., Thijs I., Mullens S., and Luyten J.: SiC foams produced by gelcasting: Synthesis and characterization. Adv. Eng. Mater. 6, 340343 (2004).
21. Potoczek M.: Gelcasting of alumina foams using agarose solutions. Ceram. Int. 34, 661667 (2008).
22. Potoczek M.: Hydroxyapatite foams produced by gelcasting using agarose. Mater. Lett. 62, 10551057 (2008).
23. Cosijns A., Vervaet C., Luyten J., Mullens S., Siepmann F., Van Hoorebeke L., Masschaele B., Cnudde V., and Remon J.P.: Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 67, 498506 (2006).
24. Ghomi H., Fathi M.H., and Edris H.: Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties. Mater. Res. Bull. 47, 35233532 (2012).
25. Santacruz I. and Moreno R.: Preparation of cordierite materials with tailored porosity by gelcasting with polysaccharides. Int. J. Appl. Ceram. Technol. 5, 7483 (2008).
26. Potoczek M., Guzi de Moraes E., and Colombo P.: Ti2AlC foams produced by gelcasting. J. Eur. Ceram. Soc. 35, 24452452 (2015).
27. Yin L., Zhou X., Yu J., Wang H., Zhao S., Luo Z., and Yang B.: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33, 13871392 (2013).
28. Stipniece L., Narkevica I., Sokolova M., Locs J., and Ozolins J.: Novel scaffolds based on hydroxyapatite/poly(vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering. Ceram. Int. 42, 15301537 (2016).
29. Akhtar F., Andersson L., Ogunwumi S., Hedin N., and Bergström L.: Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34, 16431666 (2014).
30. Tallon C., Yates M., Moreno R., and Nieto M.I.: Porosity of freeze-dried γ-Al2O3 powders. Ceram. Int. 33, 11651169 (2007).
31. Binner J., Chang H., and Higginson R.: Processing of ceramic–metal interpenetrating composites. J. Eur. Ceram. Soc. 29, 837842 (2009).
32. Ligoda-Chmiel J., Potoczek M., and Śliwa R.E.: Mechanical properties of alumina foam/tri-functional epoxy resin composites with an interpenetrating network structure. Arch. Metall. Mater. 60, 27572762 (2015).
33. Innocentini M.D.M., Coury J.R., Fukushima M., and Colombo P.: High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep. Purif. Technol. 152, 180191 (2015).
34. Vakifahmetoglu C., Zeydanli D., Innocentini M.D.M., Ribeiro F.S., Lasso P.R.O., and Soraru G.D.: Gradient-hierarchic-aligned porosity SiOC ceramics. Sci. Rep. 7, 41049 (2017).
35. Innocentini M.D.M., Chacon W.S., Caldato R.F., Rocha G.P., and Adabo G.L.: Microstructural, physical, and fluid dynamic assessment of spinel-based and phosphate-bonded investments for dental applications. Int. J. Appl. Ceram. Technol. 52, 1836218372 (2013).
36. Barg S., Innocentini M.D.M., Meloni R.V., Chacon W.S., Wang H., Koch D., and Grathwohl G.: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membr. Sci. 383, 3543 (2011).
37. Innocentini M.D.M., Faleiros R.K., Pisani R. Jr., Thijs I., Luyten J., and Mullens S.: Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17, 615627 (2010).
38. Innocentini M.D.M., Rodrigues V.P., Romano R.C.O., Pileggi R.G., Silva G.M., and Coury J.R.: Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension. J. Hazard. Mater. 162, 212221 (2008).
39. Innocentini M.D.M., Sepulveda P., and Ortega F.S.: Permeability. In Cellular Ceramics: Structure, Manufacture, Properties and Applications, Scheffler M. and Colombo P., eds. (Wiley-VCH, Weinheim, 2005) pp. 313341.
40. Innocentini M.D.M., Pardo A.R.F., Salvini V.R., and Pandolfelli V.C.: How accurate is Darcy’s law for refractories. Am. Ceram. Soc. Bull. 78(11), 6468 (1999).
41. Innocentini M.D.M., Pardo A.R.F., Salvini V.R., and Pandolfelli V.C.: Assessment of Forchheimer’s equation to predict the permeability of ceramic foams. J. Am. Ceram. Soc. 82(7), 19451948 (1999).
42. Innocentini M.D.M., Tanabe E.H., Aguiar M.L., and Coury J.R.: Filtration of gases at high pressures: Permeation behavior of fiber-based media used for natural gas cleaning. Chem. Eng. Sci. 74, 3848 (2012).
43. Ruth D. and Ma D.H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7, 255264 (1992).
44. Hlushkou D. and Tallarek U.: Transition from creeping via viscous-inertial to turbulent flow in fixed beds. J. Chromatogr. A 1126, 7085 (2006).
45. Zeng Z. and Grigg R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 5769 (2006).
46. Ergun S.: Flow through packed columns. Chem. Eng. Prog. 48(2), 8994 (1952).
47. Biasetto L., Colombo P., Innocentini M.D.M., and Mullens S.: Gas permeability of microcellular ceramic foams. Ind. Eng. Chem. Res. 46, 33663372 (2007).
48. Okada K., Isobe T., Katsumata K-i., Kameshima Y., Nakajima A., and MacKenzie K.J.D.: Porous ceramics mimicking nature—Preparation and properties of microstructures with unidirectionally oriented pores. Sci. Technol. Adv. Mater. 12(6), 111 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 182 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 17th January 2018. This data will be updated every 24 hours.