## REFERENCES

1.
L. Valdevit , A.J. Jacobsen , J.R. Greer , and W.B. Carter : Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc.
94, 1–20 (2011).

2.
R. Lakes : Foam structures with a negative Poisson’s ratio. Science
235, 1038–1040 (1987).

3.
J.B. Choi and R.S. Lakes : Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract.
80, 73–83 (1996).

4.
A. Lowe and R.S. Lakes : Negative Poisson’s ratio foam as seat cushion material. Cell. Polym.
19, 157–167 (2000).

5.
E.O. Martz , R.S. Lakes , V.K. Goel , and J.B. Park : Design of an artificial intervertebral disc exhibiting a negative Poisson’s ratio. Cell. Polym.
24, 127–138 (2005).

6.
G.N. Greaves , A.L. Greer , R.S. Lakes , and T. Rouxel : Poisson’s ratio and modern materials. Nat. Mater.
10, 823–837 (2011).

7.
M. Osanov and J.K. Guest : Topology optimization for architected materials design. Annu. Rev. Mater. Res.
46, 211–233 (2016).

8.
T.A. Schaedler and W.B. Carter : Architected cellular materials. Annu. Rev. Mater. Res.
46, 187–210 (2016).

9.
K. Bertoldi : Harnessing instabilities to design tunable architected cellular materials. Annu. Rev. Mater. Res.
47, 51–61 (2017).

10.
R.S. Lakes : Negative-Poisson’s-ratio materials: Auxetic solids. Annu. Rev. Mater. Res.
47, 63–81 (2017).

11.
J.T.B. Overvelde , J.C. Weaver , C. Hoberman , and K. Bertoldi : Rational design of reconfigurable prismatic architected materials. Nature
541, 347–352 (2017).

12.
P.M. Reis , H.M. Jaeger , and M. van Hecke : Designer matter: A perspective. Extreme Mech. Lett.
5, 25–29 (2015).

13.
K. Bertoldi , P.M. Reis , S. Willshaw , and T. Mullin : Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater.
22, 361–366 (2010).

14.
K. Kim , J. Ju , and D.M. Kim : Porous materials with high negative Poisson’s ratios—A mechanism based material design. Smart Mater. Struct.
22, 084007 (2013).

15.
K. Virk , A. Monti , T. Trehard , M. Marsh , K. Hazra , K. Boba , C.D.L. Remillat , F. Scarpa , and I.R. Farrow : SILICOMB PEEK kirigami cellular structures: Mechanical response and energy dissipation through zero and negative stiffness. Smart Mater. Struct.
22, 084014 (2013).

16.
M. Taylor , L. Francesconi , M. Gerendas , A. Shanian , C. Carson , and K. Bertoldi : Low porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater.
26, 2365–2370 (2014).

17.
Y. Jiang and Y. Li : 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv. Eng. Mater.
19, 1600609 (2017).

18.
Y. Cho , J.H. Shin , A. Costa , T.A. Kim , V. Kunin , J. Li , S.Y. Lee , S. Yang , H.N. Han , I.S. Choi , and D.J. Srolovitz : Engineering the shape and structure of materials by fractal cut. Proc. Natl. Acad. Sci. U. S. A.
111, 17390–17395 (2014).

19.
S. Shan , S.H. Kang , J.R. Raney , P. Wang , L. Fang , F. Candido , J.A. Lewis , and K. Bertoldi : Multistable architected materials for trapping elastic strain energy. Adv. Mater.
27, 4296–4301 (2015).

20.
D. Restrepo , N.D. Mankame , and P.D. Zavattieri : Phase transforming cellular materials. Extreme Mech. Lett.
4, 52–60 (2015).

21.
J. Liu , T. Gu , S. Shan , S.H. Kang , J.C. Weaver , and K. Bertoldi : Harnessing buckling to design architected materials that exhibit effective negative swelling. Adv. Mater.
28, 6619–6624 (2016).

22.
S.C. Shan , S.H. Kang , P. Wang , C.Y. Qu , S. Shian , E.R. Chen , and K. Bertoldi : Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater.
24, 4935–4942 (2014).

23.
F. Javid , P. Wang , A. Shanian , and K. Bertoldi : Architected materials with ultra-low porosity for vibration control. Adv. Mater.
28, 5943–5948 (2016).

24.
J.R. Raney , N. Nadkarni , C. Daraio , D.M. Kochmann , J.A. Lewis , and K. Bertoldi : Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. U. S. A.
113, 9722–9727 (2016).

25.
S. Shan , S.H. Kang , Z. Zhao , L. Fang , and K. Bertoldi : Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech. Lett.
4, 96–102 (2015).

26.
Y.C. Tang , G.J. Lin , L. Han , S.G. Qiu , S. Yang , and J. Yin : Design of hierarchically cut hinges for highly stretchable and reconfigurable metamaterials with enhanced strength. Adv. Mater.
27, 7181–7190 (2015).

27.
H.A. Sodano , D.J. Inman , and G. Park : A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest
36, 197–206 (2004).

28.
A. Toprak and O. Tigli : Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev.
1, 031104 (2014).

29.
A.H. Rajabi , M. Jaffe , and T.L. Arinzeh : Piezoelectric materials for tissue regeneration: A review. Acta Biomater.
24, 12–23 (2015).

30.
G-T. Hwang , H. Park , J-H. Lee , S. Oh , K-I. Park , M. Byun , H. Park , G. Ahn , C.K. Jeong , K. No , H. Kwon , S-G. Lee , B. Joung , and K.J. Lee : Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater.
26, 4880–4887 (2014).

31.
K.Y. Lee , M.K. Gupta , and S.W. Kim : Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy
14, 139–160 (2015).

32.
G.T. Hwang , Y. Kim , J.H. Lee , S. Oh , C.K. Jeong , D.Y. Park , J. Ryu , H. Kwon , S.G. Lee , B. Joung , D. Kim , and K.J. Lee : Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energ. Environ. Sci.
8, 2677–2684 (2015).

33.
F.R. Fan , W. Tang , and Z.L. Wang : Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater.
28, 4283–4305 (2016).

34.
X. Wang , S. Niu , F. Yi , Y. Yin , C. Hao , K. Dai , Y. Zhang , Z. You , and Z.L. Wang : Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano
11, 1728–1735 (2017).

35.
S. Orrego , K. Shoele , A. Ruas , K. Doran , B. Caggiano , R. Mittal , and S.H. Kang : Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy
194, 212–222 (2017).

36.
W.A. Smith : Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio. Proc. IEEE
1, 661–666 (1991).

37.
S. Iyer , M. Alkhader , and T.A. Venkatesh : Electromechanical behavior of auxetic piezoelectric cellular solids. Scr. Mater.
99, 65–68 (2015).

38.
Q. Li , Y. Kuang , and M.L. Zhu : Auxetic piezoelectric energy harvesters for increased electric power output. AIP Adv.
7, 015104 (2017).

39.
Z. Qi , D.K. Campbell , and H.S. Park : Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B
90, 245437 (2014).

40.
M.K. Blees , A.W. Barnard , P.A. Rose , S.P. Roberts , K.L. McGill , P.Y. Huang , A.R. Ruyack , J.W. Kevek , B. Kobrin , D.A. Muller and P.L. McEuen : Graphene kirigami. Nature
524, 204–207 (2015).

41.
J.N. Grima and K.E. Evans : Auxetic behavior from rotating squares. J. Mater. Sci. Lett.
19, 1563–1565 (2000).