Skip to main content
×
×
Home

Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging

  • Yinghui Zhou (a1), Yanmo Li (a1), Yongchang Liu (a1), Qianying Guo (a1), Chenxi Liu (a1), Liming Yu (a1), Chong Li (a1) and Huijun Li (a1)...
Abstract

The microstructural evolution of type 347H heat-resistant austenitic steel during long-term aging at 700–900 °C was investigated by using a transmission microscope, a scanning electron microscope, and electron energy spectrum technology. The microstructural examination showed the typical micrographs of MX carbonitrides and M23C6 carbides after aging. The existence of the Z phase (NbCrN) at the grain boundaries during aging was identified. Meanwhile, the possible precipitation sequence of these particles was also confirmed. In the beginning of aging, fine Nb(C,N) precipitates first, then, M23C6 carbides precipitate along the grain boundaries. Finally, the Z phase is also observed at the grain boundaries. Moreover, the influence of isothermal holding temperature on the precipitation of MX carbonitrides and M23C6 carbides was discussed. The various microstructural characterizations showed that the M23C6 carbides and MX carbonitrides precipitate more easily with the increase of aging temperature. Furthermore, the number and the size of MX particles and M23C6 carbides increase when the isothermal holding time is prolonged.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: licmtju@163.com
References
Hide All
1. Yuan, Y., Zhong, Z.H., Yu, Z.S., Yin, H.F., Dang, Y.Y., Zhao, X.B., Yang, Z., Lu, J.T., Yan, J.B., and Gu, Y.: Microstructural evolution and compressive deformation of a new Ni-Fe base superalloy after long term thermal exposure at 700 °C. Mater. Sci. Eng., A 619, 364 (2014).
2. Wang, Z.H., Fu, W.T., Wang, B.Z., Zhang, W.H., Lv, Z.Q., and Jiang, P.: Study on hot deformation characteristics of 12%Cr ultra-super-critical rotor steel using processing maps and Zener-Hollomon parameter. Mater. Charact. 61, 25 (2010).
3. Ha, V.T. and Jung, W.S.: Evolution of precipitate phases during long-term isothermal aging at 1083 K (810 °C) in a new precipitation-strengthened heat-resistant austenitic stainless steel. Metall. Mater. Trans. A 43, 3366 (2012).
4. NIMS: Metallographic Atlas of Long-term Crept Materials No. M-5, JIS SUS 347HTB (18Cr-12Ni-nb) (National Institute for Materials Science, Tokyo, Tsukuba, 2006).
5. Yoshikawa, K., Teranishi, H., Tokimasa, K., Fujikawa, H., Miura, M., and Kubota, K.: Fabrication and properties of corrosion resistant TP347H stainless steel. J. Mater. Eng. 10, 69 (1988).
6. Chandra, K., Kain, V., and Tewari, R.: Microstructural and electrochemical characterization of heat-treated 347 stainless steel with different phases. Corros. Sci. 67, 118 (2013).
7. Hong, S.M., Kim, M.Y., Min, D.J., Lee, K.H., Shim, J.H., Kim, D.I., Suh, J.Y., Jung, W.S., and Choi, I.S.: Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel. Mater. Charact. 94, 7 (2014).
8. Erneman, J., Schwind, M., Andren, H.O., Nilsson, J.O., Wilson, A., and Agren, J.: The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing. Acta Mater. 54, 67 (2006).
9. Prat, O., Garcia, J., Rojas, D., Carrasco, C., and Kaysser-Pyzalla, A.R.: Investigations on coarsening of MX and M23C6 precipitates in 12%Cr creep resistant steels assisted by computational thermodynamics. Mater. Sci. Eng., A 527, 5976 (2010).
10. Padilha, A.F., Machado, I.F., and Plaut, R.I.: Microstructures and mechanical properties of Fe-15%Cr-15%Ni austenitic stainless steels containing different levels of niobium additions submitted to various processing stages. J. Mater. Process. Technol. 170, 89 (2005).
11. Wang, J.Z., Liu, Z.D., Bao, H.S., and Cheng, S.C.: Evolution of precipitates of S31042 heat resistant steel during 700 °C aging. J. Iron Steel Res. Int. 20, 113 (2013).
12. Ha, V.T. and Jung, W.S.: Creep behavior and microstructure evolution at 750 in a new precipitation-strengthened heat-resistant austenitic stainless steel. Mater. Sci. Eng., A 558, 103 (2012).
13. Jung, J.G., Park, J.S., Kim, J.Y., and Lee, Y.K.: Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel. Mater. Sci. Eng., A 528, 5529 (2011).
14. Vach, M., Kunikova, T., Domankova, M., Sevc, P., Caplovic, L., Gogola, P., and Janovec, J.: Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 °C. Mater. Charact. 59, 1792 (2008).
15. Sobral, M.D.C., Mei, P.R., and Kestenbach, H-J.: Effect of carbonitride particles formed in austenite on the strength of microalloyed steels. Mater. Sci. Eng., A 367, 317 (2004).
16. Pilloni, G., Quadrini, E., and Spigarelli, S.: Interpretation of the role of forest dislocations and precipitates in high-temperature creep in a Nb-stabilised austenitic stainless steel. Mater. Sci. Eng., A 279, 52 (2000).
17. Tan, L., Byun, T.S., Katoh, Y., and Snead, L.L.: Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation. Acta Mater. 71, 11 (2014).
18. Weiss, B. and Stickler, R.: Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Mater. Trans. 3, 851 (1972).
19. Yoo, O., Oh, Y.J., Lee, B.S., and Nam, S.W.: The effect of the carbon and nitrogen contents on the fracture toughness of type 347 austenitic stainless steels. Mater. Sci. Eng., A 405, 147 (2005).
20. Chen, S.W., Zhang, C., Xia, Z.X., Ishikawa, H., and Yang, Z.G.: Precipitation behavior of Fe2Nb Laves phase on grain boundaries in austenitic heat resistant steels. Mater. Sci. Eng., A 616, 183 (2014).
21. Hong, H.U. and Naw, S.W.: Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel. J. Mater. Sci. 38, 1535 (2003).
22. Viherkoski, M., Huttunen-Saarivirta, E., Isotahdon, E., Uusitalo, M., Tianinen, T., and Kuokkala, V-T.: The effect of aging on heat-resistant cast stainless steels. Mater. Sci. Eng., A 589, 189 (2014).
23. Sourmail, T.: Precipitation in creep resistant austenitic stainless steels. Mater. Sci. Technol. 17, 1 (2001).
24. Hilmar, K.D., John, H., and Somers, M.A.J.: Atomic resolution imaging of precipitate transformation from cubic TaN to tetragonal CrTaN. Scr. Mater. 66, 261 (2012).
25. Ahmedabadi, P., Kain, V., Gupta, M., Samajdar, I., Sharma, S.C., Bhagwat, P., and Chowdhury, R.: The role of niobium carbide in radiation induced segregation behavior of type 347 austenitic stainless steel. J. Nucl. Mater. 415, 123 (2011).
26. Guan, K.S., Xu, X.D., Xu, H., and Wang, Z.W.: Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds. Nucl. Eng. Des. 235, 2485 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 333 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.