Skip to main content

Preparation of Cu-doped γ-Fe2O3 nanowires with high coercivity by chemical vapor deposition

  • Shao-Min Zhou (a1), Shi-Yun Lou (a1), Yong-Qiang Wang (a1), Xi-Liang Chen (a1), Li-Sheng Liu (a1) and Hong-Lei Yuan (a1)...

Iron oxides, including maghemite (γ-Fe2O3) and magnetite (Fe3O4), have been widely applied in many fields. For technological advances in the future, further improvements of their ferromagnetic properties are desirable. The development of iron ferrites with a large coercive field (Hc) is one of issues of consequence. For ferrites, however, enlarging the Hc value is not easy because of their low magnetocrystalling anisotropy constant. Here we report single-crystalline Cu-doped γ-Fe2O3 nanowires in which the controlled diameter (70–100 nm) and the graded Cu dopant (7, 10, and 15%) are directly obtained by a simple chemical vapor deposition technique. In particular, the coercive value (over 2 T) of 10% Cu-doped γ-Fe2O3 nanowires is much higher than that (<80 Oe) of undoped γ-Fe2O3 nanowires at room temperature. On the basis of the experimental magnetization data, the achievement of such a higher coercive field of Cu-doped γ-Fe2O3 (10%) nanowires is tentatively suggested.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Ishii O. and Sencia M.: High coercivity and high wear-resistance gamma-Fe2O3 thin-films. J. Appl. Phys. 77, 5828 (1995).
2.Jin J., Hashimoto K., and Ohkoshi S.: Formation of spherical and rod-shaped epsilon-Fe2O3 nanocrystals with a large coercive field. J. Mater. Chem. 15, 1067 (2005).
3.Jin J., Ohkoshi S., and Hashimoto K.: Giant coercive field of nanometer-sized iron oxide. Adv. Mater. 16, 48 (2004).
4.Lu N., Song X., and Zhang J.: Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound. Nanotechnology 21, 115708 (2010).
5.Kronmuller H.: Recent developments in high-tech magnetic materials. J. Magn. Magn. Mater. 140144, 25 (1995).
6.Dutta P., Manivannan A., Seehra M., Shah N., and Huffman G.: Magnetic properties of nearly defect-free maghemite nanocrystals. Phys. Rev. B 70, 174428 (2004).
7.Kusigerski V., Tadic M., Spasojevic V., Antic B., Markovic D., Boskovic S., and Matovic B.: High coercivity of gamma-Fe2O3 nanoparticles obtained by a mechanochemically activated solid-state displacement reaction. Scr. Mater. 56, 883 (2007).
8.Morales M., Veintemillas-Verdaguer S., and Serna C.: Magnetic properties of uniform gamma-Fe2O3 nanoparticles smaller than 5 nm prepared by laser pyrolysis. J. Mater. Res. 14, 3066 (1999).
9.Li L., Ding J., and Xue J.: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25, 810 (2010).
10.Chicot D., Roudet F., Lepingle V., and Louis G.: Strain gradient plasticity to study hardness behavior of magnetite (Fe3O4) under multicyclic indentation. J. Mater. Res. 24, 749 (2009).
11.Tronc E., Chaneac C., and Jolivet J.P.: Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 139, 93 (1998).
12.Tseng Y., Souza-Neto N., Haskel D., Gich M., Frontera C., Roig A., Veenendaal M., and Nogues J.: Nonzero orbital moment in high coercivity ε-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B 79, 094404 (2009).
13.Ding Y., Morber J., Snyder R., and Wang Z.: Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv. Funct. Mater. 17, 1172 (2007).
14.Sakurai S., Namai A., Hashimoto K., and Ohkoshi S.: First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-Phase). J. Am. Chem. Soc. 131, 18299 (2009).
15.Lai J., Shafi K.V., Loos K., Ulman A., Lee Y., Vogt T., and Estournes C.: Doping gamma-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the alpha-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470 (2003).
16.Chakrabarti S., Mandal S., and Chaudhuri S.: Cobalt doped γ-Fe2O3 nanoparticles: Synthesis and magnetic properties. Nanotechnology 16, 506 (2005).
17.Bensaoula A., Chu C., Hor P., Ignatiev A., Liu J., Meng R., Mesarwi A., Richardson J., Ting C., Wang Y., and Wolfe J.: A study on Hc-enhancement in co-modified γ-Fe2O3. J. Magn. Magn. Mater. 5457, 1697 (1986).
18.Helgason O., Greneche J., Berry F., Morup S., and Mosselmans F.: Tin- and titanium-doped gamma-Fe2O3 (maghemite). J. Phys. Cond. Mater. 13, 10785 (2001).
19.Deng M., Chin T., and Chen F.: Fine structure and magnetic properties of Mn- and Co-doped nanocrystalline γ-Fe2O3. J. Appl. Phys. 75, 5888 (1994).
20.Zhu Y. and Li C.: Materials science communication effect of doped silicon on structure and magnetic properties of γ-Fe2O3 particles. Mater. Chem. Phys. 51, 169 (1997).
21.Tripathy D., Adeyeye A., Boothroyd C., and Shannigrahi S.: Microstructure and magnetotransport properties of Cu-doped Fe3O4 films. J. Appl. Phys. 103, 07F701 (2008).
22.Yao Q., Liu W., Zhao X.G., and Zhang Z.: Structure and magnetic properties of Cu-doped SmCo6.7−xCuxCr0.3 magnets. J. Appl. Phys. 102, 093905 (2007).
23.Li W., Ohkubo T., Akiya T., Kato H., and Hono K.: The role of Cu addition in the coercivity enhancement of sintered Nd-Fe-B permanent magnets. J. Mater. Res. 24, 413 (2009).
24.Hussein A., Murugaraj P., Rix C., and Mainwaring D.: The influence of Sb doping in achieving high magnetic coercivities in CoPt nanoparticles for micromagnet applications. J. Mater. Res. 24, 499 (2009).
25.Yoshikawa N., Cao Z., Louzguin D., Xie G., and Taniguchi S.: Micro/nanostructure observation of microwave-heated Fe3O4. J. Mater. Res. 24, 1741 (2009).
26.Zhu A., Luo X., and Dai S.: Chitosan-poly (acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res. 24, 2307 (2009).
27.Ianos R.: An efficient solution for the single-step synthesis of 4CaO·Al2O3·Fe2O3 powders. J. Mater. Res. 24, 245 (2009).
28.Zhou S., Zhang X., Gong H., Zhang B., Wu Z., Du Z., and Wu S.: Magnetic enhancement of pure gamma Fe2O3 nanochains by chemical vapor deposition. J. Phys. Cond. Mater. 20, 075217 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.