Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Wang, Yuejian Liu, Zhi T. Y. Khare, Sanjay V. Collins, Sean Andrew Zhang, Jianzhong Wang, Liping and Zhao, Yusheng 2016. Thermal equation of state of silicon carbide. Applied Physics Letters, Vol. 108, Issue. 6, p. 061906.

    Liu, Yongsheng Hu, Chenghao Men, Jing Feng, Wei Cheng, Laifei and Zhang, Litong 2015. Effect of diamond content on microstructure and properties of diamond/SiC composites prepared by tape-casting and CVI process. Journal of the European Ceramic Society, Vol. 35, Issue. 8, p. 2233.

    Szutkowska, M. Jaworska, L. Boniecki, M. Stobierski, L. and Rozmus, M. 2015. Mechanical behavior of diamond matrix composites with ceramic Ti3(Si,Ge)C2 bonding phase. International Journal of Refractory Metals and Hard Materials, Vol. 49, p. 302.

    Zhou, Xiaolin Wang, Yanhui Li, Tianheng Li, Xiaohu Cheng, Xiaozhe Dong, Liang Yuan, Yungang Zang, Jianbing Lu, Jing Yu, Yiqing and Xu, Xipeng 2015. Fabrication of diamond–SiC–TiC composite by a spark plasma sintering-reactive synthesis method. Journal of the European Ceramic Society, Vol. 35, Issue. 1, p. 69.

    Liu, R. J. Cao, Y. B. Yan, C. L. Zhang, C. R. and He, P. B. 2014. Preparation and characterization of diamond-silicon carbide-silicon composites by gaseous silicon vacuum infiltration process. Journal of Superhard Materials, Vol. 36, Issue. 6, p. 410.

    Liu, Yongsheng Hu, Chenghao Feng, Wei Men, Jing Cheng, Laifei and Zhang, Litong 2014. Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process. Journal of the European Ceramic Society, Vol. 34, Issue. 15, p. 3489.

    Yang, Zhenliang He, Xinbo Wu, Mao Zhang, Lin Ma, An Liu, Rongjun Hu, Haifeng Zhang, Yudi and Qu, Xuanhui 2013. Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. Journal of the European Ceramic Society, Vol. 33, Issue. 4, p. 869.

    Belnap, J.D. 2010. Sintering of Advanced Materials.

    Kidalov, Sergey V. and Shakhov, Fedor M. 2009. Thermal Conductivity of Diamond Composites. Materials, Vol. 2, Issue. 4, p. 2467.

    Nauyoks, Stephen Wieligor, Monika Zerda, T.W. Balogh, Levente Ungar, Tamas and Stephens, Peter 2009. Stress and dislocations in diamond–SiC composites sintered at high pressure, high temperature conditions. Composites Part A: Applied Science and Manufacturing, Vol. 40, Issue. 5, p. 566.

    Srikanth, Vadali V.S.S. Staedler, Thorsten and Jiang, Xin 2009. Deposition of stress-free diamond films on Si by diamond/β-SiC nanocomposite intermediate layers. Diamond and Related Materials, Vol. 18, Issue. 10, p. 1326.

    Gubicza, J. Nauyoks, S. Balogh, L. Labar, J. Zerda, T.W. and Ungár, T. 2007. Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. Journal of Materials Research, Vol. 22, Issue. 05, p. 1314.

    Park, Joon Seok Sinclair, Robert Rowcliffe, David Stern, Margaret and Davidson, Howard 2007. Orientation relationship in diamond and silicon carbide composites. Diamond and Related Materials, Vol. 16, Issue. 3, p. 562.

    Ungár, Tamas and Gubicza, Jeno 2007. Nanocrystalline materials studied by powder diffraction line profile analysis. Zeitschrift für Kristallographie - Crystalline Materials, Vol. 222, Issue. 3-4,

    Gubicza, J. Ungár, T. Wang, Y. Voronin, G. Pantea, C. and Zerda, T.W. 2006. Microstructure of diamond–SiC nanocomposites determined by X-ray line profile analysis. Diamond and Related Materials, Vol. 15, Issue. 9, p. 1452.

    Pantea, C. Voronin, G. A. and Zerda, T. W. 2005. Kinetics of the reaction between diamond and silicon at high pressure and temperature. Journal of Applied Physics, Vol. 98, Issue. 7, p. 073512.


Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

  • G.A. Voronin (a1), T.W. Zerda (a1), J. Gubicza (a2), T. Ungár (a3) and S.N. Dub (a4)
  • DOI:
  • Published online: 01 March 2011

A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness.

Corresponding author
a) Address all correspondence to this author. e-mail address:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

5.P. Larsson , N. Axen , T. Ekstrom , S. Gordeev andS. Hogmark : Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater . 17, 453 (1999).

6.S.K. Gordeev , S.K. Zhukov , L.V. Danchukova andT.C. Ekstrom : Low-pressure fabrication of diamond-SiC-Si composites. Inorg. Mater. 37 579 (2001).

7.P.D. Ownby andJ. Liu : Nano diamond enhanced silicon carbide matrix composites. Ceram. Eng. Sci. Proc . 12, 1345 (1991).

8.Y.S. Ko , T. Tsurumi , O. Fukunaga andT. Yano : High pressure sintering of diamond-SiC composite. J. Mater. Sci. 36 469 (1992).

10.G.A. Voronin , T.W. Zerda , J. Qian , Y. Zhao , D. He , and S.N. Dub , Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 1477 (2003).

11.X. Jiang andC.P. Klages : Synthesis of diamond/β–SiC composite films by microwave plasma assisted chemical vapor deposition. Appl. Phys. Lett. 61 1629 (1992).

14.T. Ungar , J. Gubicza , G. Ribarik andA. Borbely : Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34 298 (2001).

16.T. Ungár andG. Tichy The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 171, 425 (1999)

17.H.J. McSkimin andW.L. Bond : Elastic moduli of diamond. Phys. Rev. 105 116 (1957).

19.T. Ungár , I. Dragomir , Á. Révész andA. Borbély : The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32 992 (1999).

20.J. Gubicza , M. Kassem , G. Ribárik andT. Ungár : The evolution of the microstructure in mechanically alloyed Al-Mg studied by x-ray diffraction. Mater. Sci. Eng. A 372 115 (2004).

21.G. Voronin , C. Pantea , T.W. Zerda andK. Ejsmont : Oriented growth of β-SiC on diamond crystals at high pressure. J. Appl. Phys. 90 5933 (2001).

23.S. Veprek In Handbook of Ceramic Hard Materials, edited by R. Riedl (Wiley-VCH, Weinheim, Germany, 2000), p. 104.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *