Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 48
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Alvarez, Rafael Garcia-Valenzuela, Aurelio Lopez-Santos, Carmen Ferrer, Francisco J. Rico, Victor Guillen, Elena Alcon-Camas, Mercedes Escobar-Galindo, Ramon Gonzalez-Elipe, Agustin R. and Palmero, Alberto 2016. High-Rate Deposition of Stoichiometric Compounds by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers,

    Amalathas, Amalraj Peter and Alkaisi, Maan M. 2016. Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. Journal of Materials Science: Materials in Electronics,

    Crovetto, Andrea Ottsen, Tobias Sand Stamate, Eugen Kjær, Daniel Schou, Jørgen and Hansen, Ole 2016. On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering. Journal of Physics D: Applied Physics, Vol. 49, Issue. 29, p. 295101.

    Deuermeier, Jonas Bayer, Thorsten J M Yanagi, Hiroshi Kiazadeh, Asal Martins, Rodrigo Klein, Andreas and Fortunato, Elvira 2016. Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3interface. Materials Research Express, Vol. 3, Issue. 4, p. 046404.

    Garcia-Valenzuela, Aurelio Alvarez, Rafael Lopez-Santos, Carmen Ferrer, Francisco J. Rico, Victor Guillen, Elena Alcon-Camas, Mercedes Escobar-Galindo, Ramon Gonzalez-Elipe, Agustin R. and Palmero, Alberto 2016. Stoichiometric Control of SiOxThin Films Grown by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers,

    Gassmann, Jürgen Yampolskii, Sergey V. Genenko, Yuri A. Reusch, Thilo C.G. and Klein, Andreas 2016. Functional Interfaces for Transparent Organic Electronic Devices: Consistent Description of Charge Injection by Combining In Situ XPS and Current Voltage Measurements with Self-Consistent Modeling. The Journal of Physical Chemistry C, Vol. 120, Issue. 19, p. 10466.

    Klein, Andreas and Green, D. J. 2016. Interface Properties of Dielectric Oxides. Journal of the American Ceramic Society, Vol. 99, Issue. 2, p. 369.

    Mickan, Martin Helmersson, Ulf Rinnert, Hervé Ghanbaja, Jaafar Muller, Dominique and Horwat, David 2016. Room temperature deposition of homogeneous, highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering. Solar Energy Materials and Solar Cells, Vol. 157, p. 742.

    Romanyuk, V. Dmitruk, N. Karpyna, V. Lashkarev, G. Popovych, V. Dranchuk, M. Pietruszka, R. Godlewski, M. Dovbeshko, G. Timofeeva, I. Kondratenko, O. Taborska,, M. and Ievtushenko, A. 2016. Optical and Electrical Properties of Highly Doped ZnO:Al Films Deposited by Atomic Layer Deposition on Si Substrates in Visible and Near Infrared Region. Acta Physica Polonica A, Vol. 129, Issue. 1a, p. A-36.

    Trenque, I. Gaudon, M. Duguet, E. and Mornet, S. 2016. Visible-transparent and UV/IR-opaque colloidal dispersions of Ga-doped zinc oxide nanoparticles. New J. Chem., Vol. 40, Issue. 8, p. 7204.

    Zubizarreta, C. G-Berasategui, E. Ciarsolo, I. Barriga, J. Gaspar, D. Martins, R. and Fortunato, E. 2016. The influence of target erosion grade in the optoelectronic properties of AZO coatings growth by magnetron sputtering. Applied Surface Science, Vol. 380, p. 218.

    Bissig, B. Jäger, T. Ding, L. Tiwari, A. N. and Romanyuk, Y. E. 2015. Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering. APL Materials, Vol. 3, Issue. 6, p. 062802.

    Gassmann, Andrea Yampolskii, Sergey V. Klein, Andreas Albe, Karsten Vilbrandt, Nicole Pekkola, Oili Genenko, Yuri A. Rehahn, Matthias and von Seggern, Heinz 2015. Study of electrical fatigue by defect engineering in organic light-emitting diodes. Materials Science and Engineering: B, Vol. 192, p. 26.

    Haase, F. Lundin, D. Bornholdt, S. and Kersten, H. 2015. On the Impact of Electron Temperature in Magnetron Sputtering Benchmarked with Energy Flux Measurements. Contributions to Plasma Physics, Vol. 55, Issue. 10, p. 701.

    Haruta, Masakazu Shiraki, Susumu Suzuki, Tohru Kumatani, Akichika Ohsawa, Takeo Takagi, Yoshitaka Shimizu, Ryota and Hitosugi, Taro 2015. Negligible “Negative Space-Charge Layer Effects” at Oxide-Electrolyte/Electrode Interfaces of Thin-Film Batteries. Nano Letters, Vol. 15, Issue. 3, p. 1498.

    Hur, Min Young Kim, Jin Seok and Lee, Hae June 2015. The effect of negative ions from the target on thin film deposition in a direct current magnetron sputtering system. Thin Solid Films, Vol. 587, p. 3.

    Lei, Pei Leroy, Wouter Dai, Bing Zhu, Jiaqi Chen, Xiaoting Han, Jiecai and Depla, Diederik 2015. Study on reactive sputtering of yttrium oxide: Process and thin film properties. Surface and Coatings Technology, Vol. 276, p. 39.

    Madani Ghahfarokhi, Omid Chakanga, Kambulakwao Geissendoerfer, Stefan Sergeev, Oleg von Maydell, Karsten and Agert, Carsten 2015. DC-sputtered ZnO:Al as transparent conductive oxide for silicon heterojunction solar cells with µc-Si:H emitter. Progress in Photovoltaics: Research and Applications, Vol. 23, Issue. 10, p. 1340.

    Mayes, E L H Murdoch, B J Bilek, M M M McKenzie, D R McCulloch, D G and Partridge, J G 2015. Co-deposition of band-gap tuned Zn1−xMgxO using high impulse power- and dc-magnetron sputtering. Journal of Physics D: Applied Physics, Vol. 48, Issue. 13, p. 135301.

    Oka, Nobuto Murata, Akiyo Nakamura, Shin-ichi Jia, Junjun Iwabuchi, Yoshinori Kotsubo, Hidefumi and Shigesato, Yuzo 2015. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering. APL Materials, Vol. 3, Issue. 10, p. 104407.


Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment

  • Klaus Ellmer (a1) and Thomas Welzel (a1)
  • DOI:
  • Published online: 08 February 2012

Transparent conductive oxides (TCOs) are degenerately doped compound semiconductors with wide band gaps (Eg > 3 eV), which are used as transparent electrodes in optoelectronic devices. Reports on the influence of negative ions on the electrical properties of TCO films are reviewed and compared with our results. It was reported that the radial resistivity distributions depend (i) on the excitation mode of the magnetron (direct current or radio frequency), (ii) on the erosion state of the sputtering target, and (iii) on the density of the ceramic targets. This can be explained by the fact that the negative ions in magnetron discharges (in our case O) are generated at the target surface and accelerated toward the growing films. Their energy and their radial distribution depend on the discharge voltage and the shape of the emitting surface, i.e., of the erosion groove. Ways for reducing the effect of negative ion bombardment are discussed.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.K. Ellmer , A. Klein , and B. Rech (Eds.): Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, Berlin, 2008).

2.G. Helwig : Elektrische Leitfähigkeit und Struktur aufgestäubter Kadmiumoxydschichten. Z. Phys. 132, 621 (1952).

3.G. Rupprecht : Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten. Z. Phys. 139, 504 (1954).

5.K. Ellmer : Electrical properties, in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, edited by K. Ellmer , A. Klein , B. Rech (Springer, Berlin, 2008), p. 35.

6.P. Nath , R.F. Bunshah , B.M. Basol , and O.M. Staffsud : Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463 (1980).

7.H.S. Randhawa , M.D. Matthews , and R.F. Bunshah : SnO2 films prepared by activated reactive evaporation. Thin Solid Films 83, 267 (1981).

8.I. Hamberg and C.G. Granqvist : Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123 (1986).

9.J. Hu and R.G. Gordon : Textured aluminium-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71(2), 880 (1992).

11.G.A. Rozgonyi and W.J. Polito : Preparation of ZnO thin films by sputtering of the compound in oxygen and argon. Appl. Phys. Lett. 8, 220 (1966).

13.K. Tominaga , N. Ueshiba , Y. Shintani , and O. Tada : High-energy neutral atoms in the sputtering of ZnO. Jpn. J. Appl. Phys. 20(3), 519 (1981).

14.G.A. Hirata , J. McKittrick , J. Siqueiros , O.A. Lopez , T. Cheeks , O. Contreras , and J.Y. Yi : High-transmittance-low resistivity ZnO:Ga films by laser ablation. J. Vac. Sci. Technol. A 14(3), 791 (1996).

15.E.M. Kaidashev , M. Lorenz , H. von Wenckstern , A. Rahm , H-C. Semmelhack , K-H. Han , G. Benndorf , C. Bundesmann , H. Hochmuth , and M. Grundmann : High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 82(22), 3901 (2003).

16.S. Goldsmith : Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties. Surf. Coat. Technol. 201, 3993 (2006).

17.B.K. Tay , Z.W. Zhao , and D.H.C. Chua : Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52, 1 (2006).

18.T. Miyata , Y. Honma , and T. Minami : Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation. J. Vac. Sci. Technol. A 25(4), 1193 (2007).

19.A. Anders , S.H.N. Lim , K.M. Yu , J. Andersson , J. Roseìn , M. McFarland , and J. Brown : High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition. Thin Solid Films 518, 3313 (2010).

20.R.J. Mendelsberg , S.H.N. Lim , Y.K. Zhu , J. Wallig , D.J. Milliron , and A. Anders : Achieving high mobility ZnO: Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D 44, 232003 (2011).

22.J.A. Thornton : High Rate Thick Film Growth. Annual Review of Material Science, Vol. 7, edited by R.A. Huggins , R.H. Bube , and R.W. Roberts (Annual Reviews Inc., Palo Alto, CA, 1977), p. 239.

24.J.J. Cuomo , R.J. Gambino , J.M.E. Harper , and J.D. Kuptsis : Origin and effects of negative ions in the sputtering of intermetallic compounds. IBM J. Res. Dev. 21, 580 (1977).

25.H.F. Winters : Elementary processes at solid surfaces immersed in low pressure plasmas, in Plasma Chemistry III, Vol. 94, edited by S. Veprek and M. Venugopalan (Springer, Berlin, 1980), p. 69.

26.D.K. Brice , J.Y. Tsao , and S.T. Picraux : Partitioning of ion-induced surface and bulk displacements. Nucl. Instrum. Methods Phys. Res. B 44, 68 (1989).

28.F.M. Penning : Ein neues Manometer für niedrige Gasdrucke, insbesondere zwischen 10−3 und 10−5 mm. Physica 4(2), 71 (1937).

31.M. Wright and T. Beardow : Design advances and applications of the rotatable cylindrical magnetron. J. Vac. Sci. Technol. A 4, 388 (1986).

32.S.J. Nadel , P. Greene , J. Rietzel , M. Perata , L. Malaszewski , and R. Hill : Advanced generation of rotatable magnetron technology for high performance reactive sputtering. Thin Solid Films 502, 15 (2006).

33.F. Richter , T. Welzel , R. Kleinhempel , T. Dunger , T. Knoth , M. Dimer , and F. Milde : Ion-energy distributions in AZO magnetron sputtering from planar and rotatable magnetrons. Surf. Coat. Technol. 204, 845 (2009).

35.M.W. Thompson : II. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos. Mag. 18/152, 377 (1968).

36.W. Eckstein : Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991).

37.Y. Yamamura and H. Tawara : Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At. Data Nucl. Data Tables 62(2), 149 (1996).

39.J.M.E. Harper , J.J. Cuomo , R.J. Gambino , H.R. Kaufman , and R.S. Robinson : Mean free path of negative ions in diode sputtering. J. Vac. Sci. Technol. 15(4), 1597 (1978).

40.W.D. Davis and T.A. Vanderslice : Ion energies at the cathode of a glow discharge. Phys. Rev. 131(1), 219 (1963).

41.M. Zeuner , H. Neumann , J. Zalman , and H. Biederman : Sputter process diagnostics by negative ions. J. Appl. Phys. 83(10), 5083 (1998).

42.S. Mráz and J.M. Schneider : Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films. J. Appl. Phys. 100, 023503 (2006).

43.S. Mahieu and D. Depla : Correlation between electron and negative O- ion emission during reactive sputtering of oxides. Appl. Phys. Lett. 90, 121117 (2007).

44.R. Wendt and K. Ellmer : Desorption of Zn from a growing ZnO:Al-film deposited by magnetron sputtering. Surf. Coat. Technol. 93(1), 27 (1997).

45.R. Wendt , K. Ellmer , and K. Wiesemann : Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system. J. Appl. Phys. 82(5), 2115 (1997).

46.T. Welzel , R. Kleinhempel , T. Dunger , and F. Richter : Ion energy distributions in magnetron sputtering of zinc aluminium oxide. Plasma Processes Polym. 6(S1), S331 (2009).

47.S. Seeger , K. Harbauer , and K. Ellmer : Ion-energy distributions at a substrate in reactive magnetron sputtering discharges in Ar/H2S from copper, indium and tungsten targets. J. Appl. Phys. 105, 053305 (2009).

48.Y. Shintani , K. Nakanishi , T. Takawaki , and O. Tada : Behaviours of high-energy electrons and neutral atoms in the sputtering of BaTiO3. Jpn. J. Appl. Phys. 14, 1875 (1975).

49.D.J. Kester and R. Messier : Predicting negative ion resputtering in thin films. J. Vac. Sci. Technol. A 4(3), 496 (1986).

50.J.J. Hanak and J.P. Pellicane : Effect of secondary electrons and negative ions on sputtering of films. J. Vac. Sci. Technol. 13(1), 406 (1976).

51.J.J. Cuomo , R.J. Gambino , J.M.E. Harper , J.D. Kuptsis , and J.C. Webber : Significance of negative ion formation in sputtering and SIMS analysis. J. Vac. Sci. Technol. 15(2), 281 (1978).

52.J.M. Ngaruiya , O. Kappertz , S.H. Mohamed , and M. Wuttig : Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films. Appl. Phys. Lett. 85(5), 748 (2004).

53.J.H. Keller and R.G. Simmons : Sputtering process model of deposition rate. IBM J. Res. Dev. 23(1), 24 (1979).

56.S.A. Barnett , G. Bajor , and J.E. Greene : Growth of high‐quality epitaxial GaAs films by sputter deposition. Appl. Phys. Lett. 37, 734 (1980).

57.J.W. Rabalais , A.H. Al-Bayati , K.J. Boyd , D. Marton , J. Kulik , Z. Zhang , and W.K. Chu : Ion-energy effects in silicon ion-beam epitaxy. Phys. Rev. B 53(16), 10781 (1996).

58.J.E. Greene , S.A. Barnett , J-E. Sundgren , and A. Rockett : Low-Energy Ion/Surface Interactions During Film Growth from the Vapor Phase. Ion Beam Assisted Film Growth, edited by T. Itoh (Elsevier, Amsterdam, 1989), p. 101.

59.T. Itoh (Ed.): Ion Beam Assisted Film Growth (Elsevier, Amsterdam, 1989).

60.I. Petrov , P.B. Barna , L. Hultman , and J.E. Greene : Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21(5), S117 (2003).

62.A. Anders : A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518, 4087 (2010).

63.E. Wendler , O. Bilani , K. Gärtner W. Wesch , M. Hayes , F.D. Auret , K. Lorenz , and E. Alves : Radiation damage in ZnO ion implanted at 15 K. Nucl. Instrum. Methods 267, 2708 (2009).

64.K. Tominaga , S. Iwamura , Y. Shintani , and O. Tada : Energy analysis of high-energy neutral atoms in the sputtering of ZnO and BaTiO3. Jpn. J. Appl. Phys. 21, 688 (1982).

65.T. Minami , H. Nanto , and S. Takata : Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field. Appl. Phys. Lett. 41(10), 958 (1982).

66.H. Nanto , T. Minami , S. Shooji , and S. Takata : Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications. J. Appl. Phys. 55(4), 1029 (1984).

67.K. Tominaga , T. Yuasa , M. Kume , and O. Tada : Influence of energetic oxygen bombardment on conductive ZnO films. Jpn. J. Appl. Phys. 24(8), 944 (1985).

68.T. Minami , J-I. Oda , J-I. Nomoto , and T. Miyata : Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films 519, 385 (2010).

69.O. Kluth , G. Schöpe , B. Rech , R. Menner , M. Oertel , K. Orgassa , and H.W. Schock : Comparative material study on RF and DC magnetron sputtered ZnO:Al films. Thin Solid Films 502, 311 (2006).

70.B. Szyszka : Magnetron Sputtering of ZnO Films. Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, edited by K. Ellmer , A. Klein , and B. Rech (Springer, Berlin, 2008), p. 187.

71.D. Horwat and A. Billard : Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering. Thin Solid Films 515, 5444 (2007).

72.S. Ishibashi , Y. Higuchi , Y. Ota , and K. Nakamura : Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 8(3), 1403 (1990).

74.C. May and J. Strümpfel : ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Films 351, 48 (1999).

75.T.V. Butkhuzi , A.V. Bureyev , A.N. Georgobiani , N.P. Kekelidze , and T.G. Khulordava : Optical and electrical properties of radical beam gettering epitaxy grown n- and p-Type ZnO single crystals. J. Cryst. Growth 117, 366 (1992).

76.D. Horwat , M. Jullien , F. Capon , J-F. Pierson , J. Andersson , and J.L. Endrino : On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films. J. Phys. D 43, 132003 (2010).

77.K. Utsumi , O. Matsunaga , and T. Takahata : Low resistivity ITO film prepared using ultra high density ITO target. Thin Solid Films 334, 30 (1998).

78.N. Tsukamoto , D. Watanabe , M. Saito , Y. Sato , N. Oka , and Y. Shigesato : In-situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films. J. Vac. Sci. Technol. A 28, 846 (2009).

79.Y. Gassenbauer , A. Wachau , and A. Klein : Chemical and electronic properties of the ITO/Al2O3 interface. Phys. Chem. Chem. Phys. 11, 3049 (2009).

80.T. Welzel and K. Ellmer : The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering. Surf. Coat. Technol. 205, 294 (2011).

81.S. Mahieu , W.P. Leroy , K.V. Aeken , and D. Depla : Modeling the flux of high energy negative ions during reactive magnetron sputtering. J. Appl. Phys. 106, 93302 (2009).

82.R. Mientus and K. Ellmer : Structural, electrical and optical properties of SnO2-x:F-layers deposited by DC-reactive magnetron-sputtering from a metallic target in Ar/O2/CF4 mixtures. Surf. Coat. Technol. 98(1–3), 1267 (1998).

83.M. Matsuoka , Y. Hoshi , and M. Naoe : Reactive synthesis of well-oriented zinc-oxide films by means of the facing targets sputtering method. J. Appl. Phys. 63(6), 2098 (1988).

84.H. Iwase , Y. Hoshi , and M. Kameyama : Electrical properties of indium-tin oxide films deposited on nonheated substrates using a planar-magnetron sputtering system and a facing-target sputtering system. J. Vac. Sci. Technol. A 24(1), 65 (2006).

85.H. Takeda , Y. Sato , Y. Iwabuchi , M. Yoshikawa , and Y. Shigesato : Electrical and optical properties of Al-doped ZnO films deposited by hollow cathode gas flow sputtering. Thin Solid Films 517, 3048 (2009).

86.R. Cebulla , R. Wendt , and K. Ellmer : Aluminium-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical properties of the films. J. Appl. Phys. 83, 1087 (1998).

87.M. Bender , J. Trube , and J. Stollenwerk : Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films. Appl. Phys. A Mater. Sci. Process. 69, 397 (1999).

88.J.J. Cuomo and S.M. Rossnagel : Hollow-cathode-enhanced magnetron sputtering. J. Vac. Sci. Technol. A 4(3), 393 (1986).

89.E. Klawuhn , G.C. D’Couto , K.A. Ashtiani , P. Rymer , M.A. Biberger , and K.B. Lévy : Ionized physical-vapor deposition using hollow-cathode magnetron source for advanced metallization. J. Vac. Sci. Technol. A 18(4), 1546 (2000).

90.H. Zhu , E. Bunte , J. Hüpkes , H. Siekmann , and S.M. Huang : Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films 517, 3161 (2009).

91.N. Brenning , I. Axnäs , M.A. Raadu , D. Lundin , and U. Helmersson : A bulk plasma model for dc and HiPIMS magnetrons. Plasma Sources Sci. Technol. 17, 45009 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *