Skip to main content
×
Home
    • Aa
    • Aa

Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment

  • Klaus Ellmer (a1) and Thomas Welzel (a1)
Abstract
Abstract

Transparent conductive oxides (TCOs) are degenerately doped compound semiconductors with wide band gaps (Eg > 3 eV), which are used as transparent electrodes in optoelectronic devices. Reports on the influence of negative ions on the electrical properties of TCO films are reviewed and compared with our results. It was reported that the radial resistivity distributions depend (i) on the excitation mode of the magnetron (direct current or radio frequency), (ii) on the erosion state of the sputtering target, and (iii) on the density of the ceramic targets. This can be explained by the fact that the negative ions in magnetron discharges (in our case O) are generated at the target surface and accelerated toward the growing films. Their energy and their radial distribution depend on the discharge voltage and the shape of the emitting surface, i.e., of the erosion groove. Ways for reducing the effect of negative ion bombardment are discussed.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ellmer@helmholtz-berlin.de
References
Hide All
1.Ellmer K., Klein A., and Rech B. (Eds.): Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, Berlin, 2008).
2.Helwig G. : Elektrische Leitfähigkeit und Struktur aufgestäubter Kadmiumoxydschichten. Z. Phys. 132, 621 (1952).
3.Rupprecht G. : Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten. Z. Phys. 139, 504 (1954).
4.Ginley D.S., Hosono H., and Paine D.C. (Eds.): Handbook of Transparent Conductors (Springer, New York, 2010).
5.Ellmer K. : Electrical properties, in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, edited by Ellmer K., Klein A., Rech B. (Springer, Berlin, 2008), p. 35.
6.Nath P., Bunshah R.F., Basol B.M., and Staffsud O.M. : Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463 (1980).
7.Randhawa H.S., Matthews M.D., and Bunshah R.F. : SnO2 films prepared by activated reactive evaporation. Thin Solid Films 83, 267 (1981).
8.Hamberg I. and Granqvist C.G. : Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123 (1986).
9.Hu J. and Gordon R.G. : Textured aluminium-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71(2), 880 (1992).
10.Fay S. and Shah A. : Zinc Oxide Growth by CVD Process as Transparent Contact for Thin Film Solar Cell Applications. Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, edited by Ellmer K., Klein A., Rech B. (Springer, Berlin, 2007), p. 235.
11.Rozgonyi G.A. and Polito W.J. : Preparation of ZnO thin films by sputtering of the compound in oxygen and argon. Appl. Phys. Lett. 8, 220 (1966).
12.Hata T., Minamikawa T., Noda E., Moromoto O., and Hada T. : High rate deposition of ZnO films using improved DC reactive magnetron sputtering technique. Jpn. J. Appl. Phys. Suppl. 18-1, 219 (1978).
13.Tominaga K., Ueshiba N., Shintani Y., and Tada O. : High-energy neutral atoms in the sputtering of ZnO. Jpn. J. Appl. Phys. 20(3), 519 (1981).
14.Hirata G.A., McKittrick J., Siqueiros J., Lopez O.A., Cheeks T., Contreras O., and Yi J.Y. : High-transmittance-low resistivity ZnO:Ga films by laser ablation. J. Vac. Sci. Technol. A 14(3), 791 (1996).
15.Kaidashev E.M., Lorenz M., von Wenckstern H., Rahm A., Semmelhack H-C., Han K-H., Benndorf G., Bundesmann C., Hochmuth H., and Grundmann M. : High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 82(22), 3901 (2003).
16.Goldsmith S. : Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties. Surf. Coat. Technol. 201, 3993 (2006).
17.Tay B.K., Zhao Z.W., and Chua D.H.C. : Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52, 1 (2006).
18.Miyata T., Honma Y., and Minami T. : Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation. J. Vac. Sci. Technol. A 25(4), 1193 (2007).
19.Anders A., Lim S.H.N., Yu K.M., Andersson J., Roseìn J., McFarland M., and Brown J. : High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition. Thin Solid Films 518, 3313 (2010).
20.Mendelsberg R.J., Lim S.H.N., Zhu Y.K., Wallig J., Milliron D.J., and Anders A. : Achieving high mobility ZnO: Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D 44, 232003 (2011).
21.Nonomura K., Loewenstein T., Michaelis E., Wöhrle D., Yoshida T., Minoura H., and Schlettwein D. : Photoelectrochemical characterisation and optimisation of electrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines. Phys. Chem. Chem. Phys. 7, 3867 (2006).
22.Thornton J.A. : High Rate Thick Film Growth. Annual Review of Material Science, Vol. 7, edited by Huggins R.A., Bube R.H., and Roberts R.W. (Annual Reviews Inc., Palo Alto, CA, 1977), p. 239.
23.McKenzie D.R., Marks N.A., Guan P., Pailthorpe B.A., McFall W.D., and Yin Y. : Energetic condensation as a means of inducing the growth of films containing high pressure phases, in Surface Science: Principles and Current Applications, edited by MacDonald R.J., Taglauer E.C., and Wandelt K.R. (Springer, Berlin, 1996), p. 251.
24.Cuomo J.J., Gambino R.J., Harper J.M.E., and Kuptsis J.D. : Origin and effects of negative ions in the sputtering of intermetallic compounds. IBM J. Res. Dev. 21, 580 (1977).
25.Winters H.F. : Elementary processes at solid surfaces immersed in low pressure plasmas, in Plasma Chemistry III, Vol. 94, edited by Veprek S. and Venugopalan M. (Springer, Berlin, 1980), p. 69.
26.Brice D.K., Tsao J.Y., and Picraux S.T. : Partitioning of ion-induced surface and bulk displacements. Nucl. Instrum. Methods Phys. Res. B 44, 68 (1989).
27.Penning F.M. : USA Patent 2,146, 0251(939).
28.Penning F.M. : Ein neues Manometer für niedrige Gasdrucke, insbesondere zwischen 10−3 und 10−5 mm. Physica 4(2), 71 (1937).
29.Clarke P.J. : USA Patent 3,711,398 (1973).
30.Chapin J.S. : The planar magnetron. Res. Dev. 25(1), 37 (1974).
31.Wright M. and Beardow T. : Design advances and applications of the rotatable cylindrical magnetron. J. Vac. Sci. Technol. A 4, 388 (1986).
32.Nadel S.J., Greene P., Rietzel J., Perata M., Malaszewski L., and Hill R. : Advanced generation of rotatable magnetron technology for high performance reactive sputtering. Thin Solid Films 502, 15 (2006).
33.Richter F., Welzel T., Kleinhempel R., Dunger T., Knoth T., Dimer M., and Milde F. : Ion-energy distributions in AZO magnetron sputtering from planar and rotatable magnetrons. Surf. Coat. Technol. 204, 845 (2009).
34.Ellmer K. : Magnetron Discharges for Thin Film Deposition. Low Temperature Plasmas. Fundamentals, Technologies and Techniques, Vol. 2, edited by Hippler R., Kersten H., Schmidt M., and Schoenbach K.H. (Wiley-VCH, Berlin, 2008), p. 101.
35.Thompson M.W. : II. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos. Mag. 18/152, 377 (1968).
36.Eckstein W. : Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991).
37.Yamamura Y. and Tawara H. : Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At. Data Nucl. Data Tables 62(2), 149 (1996).
38.Lieberman M.A. and Lichtenberg A.J. : Principles of Plasma Discharges and Material Processing (Wiley, New York, 1994).
39.Harper J.M.E., Cuomo J.J., Gambino R.J., Kaufman H.R., and Robinson R.S. : Mean free path of negative ions in diode sputtering. J. Vac. Sci. Technol. 15(4), 1597 (1978).
40.Davis W.D. and Vanderslice T.A. : Ion energies at the cathode of a glow discharge. Phys. Rev. 131(1), 219 (1963).
41.Zeuner M., Neumann H., Zalman J., and Biederman H. : Sputter process diagnostics by negative ions. J. Appl. Phys. 83(10), 5083 (1998).
42.Mráz S. and Schneider J.M. : Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films. J. Appl. Phys. 100, 023503 (2006).
43.Mahieu S. and Depla D. : Correlation between electron and negative O- ion emission during reactive sputtering of oxides. Appl. Phys. Lett. 90, 121117 (2007).
44.Wendt R. and Ellmer K. : Desorption of Zn from a growing ZnO:Al-film deposited by magnetron sputtering. Surf. Coat. Technol. 93(1), 27 (1997).
45.Wendt R., Ellmer K., and Wiesemann K. : Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system. J. Appl. Phys. 82(5), 2115 (1997).
46.Welzel T., Kleinhempel R., Dunger T., and Richter F. : Ion energy distributions in magnetron sputtering of zinc aluminium oxide. Plasma Processes Polym. 6(S1), S331 (2009).
47.Seeger S., Harbauer K., and Ellmer K. : Ion-energy distributions at a substrate in reactive magnetron sputtering discharges in Ar/H2S from copper, indium and tungsten targets. J. Appl. Phys. 105, 053305 (2009).
48.Shintani Y., Nakanishi K., Takawaki T., and Tada O. : Behaviours of high-energy electrons and neutral atoms in the sputtering of BaTiO3. Jpn. J. Appl. Phys. 14, 1875 (1975).
49.Kester D.J. and Messier R. : Predicting negative ion resputtering in thin films. J. Vac. Sci. Technol. A 4(3), 496 (1986).
50.Hanak J.J. and Pellicane J.P. : Effect of secondary electrons and negative ions on sputtering of films. J. Vac. Sci. Technol. 13(1), 406 (1976).
51.Cuomo J.J., Gambino R.J., Harper J.M.E., Kuptsis J.D., and Webber J.C. : Significance of negative ion formation in sputtering and SIMS analysis. J. Vac. Sci. Technol. 15(2), 281 (1978).
52.Ngaruiya J.M., Kappertz O., Mohamed S.H., and Wuttig M. : Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films. Appl. Phys. Lett. 85(5), 748 (2004).
53.Keller J.H. and Simmons R.G. : Sputtering process model of deposition rate. IBM J. Res. Dev. 23(1), 24 (1979).
54.Ellmer K. and Mientus R. : in Proceedings of the Fourth International Symposium on Trends and New Applications in Thin Films/11th Conference on High Vacuum, Interfaces and Thin Films, edited by Hecht G., Richter F., and Jahn J. (DGM Informationsgesellschaft mbH, Oberursel, Dresden, March, 1994), p. 131.
55.Baragiola R.A. : Electron Emission from Slow Ion-Solid Interactions. Low Energy Ion-Surface Interactions, edited by Rabalais J.W. (Wiley, Chichester, 1994), p. 187.
56.Barnett S.A., Bajor G., and Greene J.E. : Growth of high‐quality epitaxial GaAs films by sputter deposition. Appl. Phys. Lett. 37, 734 (1980).
57.Rabalais J.W., Al-Bayati A.H., Boyd K.J., Marton D., Kulik J., Zhang Z., and Chu W.K. : Ion-energy effects in silicon ion-beam epitaxy. Phys. Rev. B 53(16), 10781 (1996).
58.Greene J.E., Barnett S.A., Sundgren J-E., and Rockett A. : Low-Energy Ion/Surface Interactions During Film Growth from the Vapor Phase. Ion Beam Assisted Film Growth, edited by Itoh T. (Elsevier, Amsterdam, 1989), p. 101.
59.Itoh T. (Ed.): Ion Beam Assisted Film Growth (Elsevier, Amsterdam, 1989).
60.Petrov I., Barna P.B., Hultman L., and Greene J.E. : Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21(5), S117 (2003).
61.Marton D. : Film Deposition from Low-Energy Ion Beams. Low Energy Ion-Surface Interactions, edited by Rabalais J.W. (Wiley, Chichester, 1994), p. 481.
62.Anders A. : A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518, 4087 (2010).
63.Wendler E., Bilani O., Gärtner K. Wesch W., Hayes M., Auret F.D., Lorenz K., and Alves E. : Radiation damage in ZnO ion implanted at 15 K. Nucl. Instrum. Methods 267, 2708 (2009).
64.Tominaga K., Iwamura S., Shintani Y., and Tada O. : Energy analysis of high-energy neutral atoms in the sputtering of ZnO and BaTiO3. Jpn. J. Appl. Phys. 21, 688 (1982).
65.Minami T., Nanto H., and Takata S. : Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field. Appl. Phys. Lett. 41(10), 958 (1982).
66.Nanto H., Minami T., Shooji S., and Takata S. : Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications. J. Appl. Phys. 55(4), 1029 (1984).
67.Tominaga K., Yuasa T., Kume M., and Tada O. : Influence of energetic oxygen bombardment on conductive ZnO films. Jpn. J. Appl. Phys. 24(8), 944 (1985).
68.Minami T., Oda J-I., Nomoto J-I., and Miyata T. : Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films 519, 385 (2010).
69.Kluth O., Schöpe G., Rech B., Menner R., Oertel M., Orgassa K., and Schock H.W. : Comparative material study on RF and DC magnetron sputtered ZnO:Al films. Thin Solid Films 502, 311 (2006).
70.Szyszka B. : Magnetron Sputtering of ZnO Films. Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells, edited by Ellmer K., Klein A., and Rech B. (Springer, Berlin, 2008), p. 187.
71.Horwat D. and Billard A. : Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering. Thin Solid Films 515, 5444 (2007).
72.Ishibashi S., Higuchi Y., Ota Y., and Nakamura K. : Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 8(3), 1403 (1990).
73.Ishibashi S., Higuchi Y., Ota Y., and Nakamura K. : Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol. A 8(3), 1399 (1990).
74.May C. and Strümpfel J. : ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Films 351, 48 (1999).
75.Butkhuzi T.V., Bureyev A.V., Georgobiani A.N., Kekelidze N.P., and Khulordava T.G. : Optical and electrical properties of radical beam gettering epitaxy grown n- and p-Type ZnO single crystals. J. Cryst. Growth 117, 366 (1992).
76.Horwat D., Jullien M., Capon F., Pierson J-F., Andersson J., and Endrino J.L. : On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films. J. Phys. D 43, 132003 (2010).
77.Utsumi K., Matsunaga O., and Takahata T. : Low resistivity ITO film prepared using ultra high density ITO target. Thin Solid Films 334, 30 (1998).
78.Tsukamoto N., Watanabe D., Saito M., Sato Y., Oka N., and Shigesato Y. : In-situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films. J. Vac. Sci. Technol. A 28, 846 (2009).
79.Gassenbauer Y., Wachau A., and Klein A. : Chemical and electronic properties of the ITO/Al2O3 interface. Phys. Chem. Chem. Phys. 11, 3049 (2009).
80.Welzel T. and Ellmer K. : The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering. Surf. Coat. Technol. 205, 294 (2011).
81.Mahieu S., Leroy W.P., Aeken K.V., and Depla D. : Modeling the flux of high energy negative ions during reactive magnetron sputtering. J. Appl. Phys. 106, 93302 (2009).
82.Mientus R. and Ellmer K. : Structural, electrical and optical properties of SnO2-x:F-layers deposited by DC-reactive magnetron-sputtering from a metallic target in Ar/O2/CF4 mixtures. Surf. Coat. Technol. 98(1–3), 1267 (1998).
83.Matsuoka M., Hoshi Y., and Naoe M. : Reactive synthesis of well-oriented zinc-oxide films by means of the facing targets sputtering method. J. Appl. Phys. 63(6), 2098 (1988).
84.Iwase H., Hoshi Y., and Kameyama M. : Electrical properties of indium-tin oxide films deposited on nonheated substrates using a planar-magnetron sputtering system and a facing-target sputtering system. J. Vac. Sci. Technol. A 24(1), 65 (2006).
85.Takeda H., Sato Y., Iwabuchi Y., Yoshikawa M., and Shigesato Y. : Electrical and optical properties of Al-doped ZnO films deposited by hollow cathode gas flow sputtering. Thin Solid Films 517, 3048 (2009).
86.Cebulla R., Wendt R., and Ellmer K. : Aluminium-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical properties of the films. J. Appl. Phys. 83, 1087 (1998).
87.Bender M., Trube J., and Stollenwerk J. : Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films. Appl. Phys. A Mater. Sci. Process. 69, 397 (1999).
88.Cuomo J.J. and Rossnagel S.M. : Hollow-cathode-enhanced magnetron sputtering. J. Vac. Sci. Technol. A 4(3), 393 (1986).
89.Klawuhn E., D’Couto G.C., Ashtiani K.A., Rymer P., Biberger M.A., and Lévy K.B. : Ionized physical-vapor deposition using hollow-cathode magnetron source for advanced metallization. J. Vac. Sci. Technol. A 18(4), 1546 (2000).
90.Zhu H., Bunte E., Hüpkes J., Siekmann H., and Huang S.M. : Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films 517, 3161 (2009).
91.Brenning N., Axnäs I., Raadu M.A., Lundin D., and Helmersson U. : A bulk plasma model for dc and HiPIMS magnetrons. Plasma Sources Sci. Technol. 17, 45009 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 12
Total number of PDF views: 108 *
Loading metrics...

Abstract views

Total abstract views: 483 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.