Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T22:10:54.630Z Has data issue: false hasContentIssue false

Realization of high thermoelectric performance in n-type partially filled skutterudites

Published online by Cambridge University Press:  18 May 2011

Xun Shi*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Shengqiang Bai
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lili Xi
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Jiong Yang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Wenqing Zhang*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lidong Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure and CAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Jihui Yang
Affiliation:
Chemical Sciences and Materials Systems Laboratory, GM R&D Center, Warren, Michigan 48090
*
a)Address all correspondence to these authors. e-mail: xshi@mail.sic.ac.cn
Get access

Abstract

Skutterudites are among the most exciting thermoelectric (TE) materials that could be used for various intermediate temperature applications. This study summarized our recent work on n-type partially filled skutterudites. By combining theoretical and experimental approaches, we revealed the underlying mechanism of void filling in the intrinsic lattice voids in CoSb3. With that, the electronegativity selection rule is established for the current stable filled skutterudites and further used for the discovery of a few novel filled CoSb3 compounds. The correlation between the thermal/electrical transport properties and impurity fillers in n-type partially filled skutterudites was also carefully investigated. Our results provide fundamental understanding to how those filler impurities affect electronic structures and lattice dynamics. Based on these basic understanding on transport mechanisms and sophisticated strategy in materials synthesis, TE figure of merit for n-type materials were continually increased from 1.1 to 1.4 and then to 1.7 for single-, double-, and triple-filled skutterudites.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yang, J. and Caillat, T.: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
2.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).CrossRefGoogle ScholarPubMed
3.Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
4.Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).CrossRefGoogle ScholarPubMed
5.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
6.Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidiset, M.G.: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).CrossRefGoogle ScholarPubMed
7.Sales, B.C., Mandrus, D., and Williams, R.K.: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).CrossRefGoogle ScholarPubMed
8.Shi, X., Kong, H., Li, C.P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L., and Zhang, W.: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
9.Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).CrossRefGoogle ScholarPubMed
10.Rhyee, J., Lee, K.H., Lee, S.M., Cho, E., Kim, S.I., Lee, E., Kwon, Y.S., Shim, J.H., and Kotliar, G.: Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals. Nature 459, 965 (2009).CrossRefGoogle Scholar
11.Sales, B.C., Mandrus, D.G., and Chakoumakos, B.C.: Semiconductors and semimetals, in Recent Trends in Thermoelectric Materials Research II, Vol. 70, edited by Tritt, T.M. (Academic, San Diego, 2000), pp. 136.Google Scholar
12.Uher, C.: Semiconductors and semimetals, in Recent Trends in Thermoelectric Materials Research II, Vol. 69, edited by Tritt, T.M. (Academic, San Diego, 2000), pp. 139253.Google Scholar
13.Jeitschko, W. and Brown, D.J.: LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid–transition metal polyphosphides. Acta Crystallogr. B 33, 3401 (1977).CrossRefGoogle Scholar
14.Brown, D.J. and Jeitschko, W.: Ternary arsenides with LaFe4P12-type structure. J. Solid State Chem. 32, 357 (1980).Google Scholar
15.Brown, D.J. and Jeitschko, W.: Preparation and structural investigations of antimonides with the LaFe4P12 structure. J. Less-Common Met. 72, 147 (1980).Google Scholar
16.Brown, D.J. and Jeitschko, W.: Thorium-containing pnictides with the LaFe4P12 structure. J. Less-Common Met. 76, 33 (1980).Google Scholar
17.Slack, G.A.: CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC, Boca Raton, FL, 1995), pp. 407440.Google Scholar
18.Morelli, D.T. and Meisner, G.P.: Low-temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
19.Gajewski, D.A., Dilley, N.R., Bauer, E.D., Freeman, E.F., Chau, R., Maple, M.B., Mandrus, D., Sales, B.C., and Lacerda, A.H.: Heavy fermion behaviour of the cerium-filled skutterudites CeFe4Sb12 and Ce0.9Fe3CoSb12. J. Phys. Condens. Matter 10, 6973 (1998).CrossRefGoogle Scholar
20.Danebrock, M.E., Evers, C.B.H., and Jeitschko, W.: Magnetic properties of alkaline earth and lanthanoid iron antimonides AFe4Sb12 (A = Ca, Sr, Ba, La—Nd, Sm, Eu) with the LaFe4P12 structure. J. Phys. Chem. Solids 57, 381 (1996).CrossRefGoogle Scholar
21.Dilley, N.R., Freedman, E.J., Bauer, E.D., and Maple, M.B.: Intermediate valence in the filled skutterudite compound YbFe4Sb12. Phys. Rev. B 58, 6287 (1998).CrossRefGoogle Scholar
22.Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R.: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
23.Sales, B.C., Chakoumakos, B.C., Mandrus, D., and Sharp, J.W.: Atomic displacement parameters and the lattice thermal conductivity of Clathrate-like thermoelectric compounds. J. Solid State Chem. 146, 528 (1999).CrossRefGoogle Scholar
24.Tritt, T.M., Nolas, G.S., Slack, G.A., Ehrlich, A.C., Gillespie, D.J., and Cohn, J.L.: Low-temperature transport properties of the filled and unfilled IrSb3 skutterudite system. J. Appl. Phys. 79, 8412 (1996).CrossRefGoogle Scholar
25.Chen, B., Xu, J.H., Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J.-P., Caillat, T., and Borshchevsky, A.: Low-temperature transport properties of the filled skutterudites CeFe4-xCoxSb12. Phys. Rev. B 55, 1476 (1997).CrossRefGoogle Scholar
26.Chapon, L., Ravot, D., and Tedenac, J.C.: Nickel substituted skutterudites: Synthesis and physical properties, in Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 321.Google Scholar
27.Meisner, G.P., Morelli, D.T., Hu, S., Yang, J., and Uher, C.: Structure and lattice thermal conductivity of fractionally filled skutterudites: Solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
28.Fleurial, J.-P., Caillat, T., and Borshchevsky, A.: Skutterudites: An update, in Proceedings of the 16th International Conference on Thermoelectrics, (Piscataway, NJ, 1997), p. 1.Google Scholar
29.Dudkin, L.D. and Abrikosov, N. Kh.: On the doping of the semiconductor compound CoSb3, Sov. Phys. Solid State 1, 126 (1959).Google Scholar
30.Dudkin, L.D. and Abrikosov, N. Kh.: A physicochemical investigation of cobalt antimonides. J. Inorg. Chem. 1, 169 (1956).Google Scholar
31.Zobrina, B.N. and Dudkin, L.D.: Investigation of the Thermoelectric Properties of CoSb3 with Sn, Te, and Ni Impurities, Sov. Phys. Solid State 1, 1668 (1960).Google Scholar
32.Koyanagi, T., Tsubouchi, T., Ohtani, M., Kishimoto, K., Anno, H., and Matsubara, K.: Thermoelectric properties of Co(MxSb1-x)3 (M=Ge, Sn, Pb) compounds, in Proceedings of the 15th International Conference on Thermoelectrics, (Piscataway, NJ, 1996), p. 107.Google Scholar
33.Stokes, K.L., Ehrlich, A.C., and Nolas, G.S.: Thermal conductivity of Fe-doped CoSb3 skutterudites, in Thermoelectric Materials 1998- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 339.Google Scholar
34.Anno, H., Matsubara, K., Notohara, Y., Sakakibara, T., and Tashiro, H.: Effects of doping on the transport properties of CoSb3. J. Appl. Phys. 86, 3780 (1999).CrossRefGoogle Scholar
35.Nagamoto, Y., Tanaka, K., and Koyanagi, T.: Transport properties of heavily doped n-type CoSb3, in Proceedings of the 17th International Conference on Thermoelectrics, (Piscataway, NJ, 1998), p. 302.Google Scholar
36.Morelli, D.T., Meisner, G.P., Chen, B.X., Hu, S.Q., and Uher, C.: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
37.Nolas, G.S., Cohn, J.L., and Slack, G.A.: Effect of partial void filling on the lattice thermal conductivity of skudderudites. Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
38.Kuznetsov, V.L., Kuznetsova, L.A., and Rowe, D.M.: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).CrossRefGoogle Scholar
39.Lamberton, G.A. Jr., Bhattacharya, S., Littleton, R.T. IV, Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J., and Nolas, G.S.: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
40.Nolas, G.S., Kaeser, M., Littleton, R.T. IV, and Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
41.Sales, B.C., Chakoumakos, B.C., and Mandrus, D.: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
42.Puyet, M., Lenoir, B., Dauscher, A., Dehmas, M., Stiewe, C., and Müller, E.: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852 (2004).CrossRefGoogle Scholar
43.Puyet, M., Dauscher, A., Lenoir, B., Dehmas, M., Stiewe, C., Müller, E., and Hejtmanek, J.: Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4-xNixSb12 skutterudites. J. Appl. Phys. 97, 083712 (2005).CrossRefGoogle Scholar
44.Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W., and Uher, C.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
45.Dyck, J.S., Chen, W., Uher, C., Chen, L., Tang, X.F., and Hirai, T.: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
46.Nolas, G.S., Takizawa, H., Endo, T., Sellinschegg, H., and Johnson, D.C.: Thermoelectric properties of Sn-filled skutterudites. Appl. Phys. Lett. 77, 52 (2000).CrossRefGoogle Scholar
47.Nolas, G. S., Yang, J., and Takizawa, H.: Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210 (2004).CrossRefGoogle Scholar
48.Pei, Y.Z., Chen, L.D., Zhang, W., Shi, X., Bai, S.Q., Zhao, X.Y., Mei, Z.G., and Li, X.Y.: Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett. 89, 221107 (2006).CrossRefGoogle Scholar
49.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Zhang, W.B., and Pei, Y.Z.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
50.Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., and Yang, J.H.: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009).CrossRefGoogle Scholar
51.Pei, Y.Z., Bai, S.Q., Zhao, X.Y., Zhang, W., and Chen, L.D.: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422 (2008).CrossRefGoogle Scholar
52.Yang, J., Hao, Q., Wang, H., Lan, Y.C., He, Q.Y., Minnich, A., Wang, D.Z., Harriman, J.A., Varki, V.M., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80, 115329 (2009).CrossRefGoogle Scholar
53.He, T., Chen, J.Z., Rosenfeld, H.D., and Subramanian, M.A.: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).CrossRefGoogle Scholar
54.Dilley, N.R., Bauer, E.D., Maple, M.B., and Sales, B.C.: Thermoelectric properties of chemically substituted skutterudites YbyCo4SnxSb12-x. J. Appl. Phys. 88, 1948 (2000).CrossRefGoogle Scholar
55.Singh, D.J. and Pickett, W.E.: Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B 50, 11235 (1994).CrossRefGoogle ScholarPubMed
56.Singh, D.J. and Mazin, I.I.: Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650 (1997).CrossRefGoogle Scholar
57.Singh, D.J., Nordstrom, L., Pickett, W.E., and Feldman, J.L.: Electronic and vibrational properties of skutterudites, in Proceedings of the 15th International Conference on Thermoelectrics, (Piscataway, NJ, 1996), p. 84.Google Scholar
58.Singh, D.J., Mazin, I.I., Kim, S.G., and Nordström, L.: Computational studies of novel thermoelectric materials, in Thermoelectric Materials-New Directions and Approaches, edited by Tritt, T.M., Mahan, G.D., Lyon, H.B. Jr., and Kanatzidis, M.G. (Mater. Res. Soc. Symp. Proc. 478, Pittsburgh, PA, 1997), p. 187.Google Scholar
59.Singh, D.J. and Du, M.: Properties of alkaline-earth-filled skutterudite antimonides: A(Fe, Ni)4Sb12 (A=Ca, Sr, and Ba). Phys. Rev. B 82, 075115 (2010).CrossRefGoogle Scholar
60.Singh, D.J., Mazin, I.I., Feldman, J.L., and Fornari, M.: Properties of novel thermoelectrics from first-principles calculations, in Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 3.Google Scholar
61.Llunell, M., Alemany, P., Alvarez, S., and Zhukov, V.P.: Electronic structure and bonding in skutterudite-type phosphides. Phys. Rev. B 53, 10605 (1996).CrossRefGoogle ScholarPubMed
62.Løvvik, O.M. and Prytz, Ø.: Density-functional band-structure calculations for La-, Y-, and Sc-filled CoP3-based skutterudite structures. Phys. Rev. B 70, 195119 (2004).CrossRefGoogle Scholar
63.Bertin, L. and Gatti, C.: The impact of the actual geometrical structure of a thermoelectric material on its electronic transport properties: The case of doped skutterudite systems. J. Chem. Phys. 121, 8983 (2004).CrossRefGoogle Scholar
64.Sofo, J.O. and Mahan, G.D.: Electronic structure of CoSb3: A narrow-band-gap semiconductor. Phys. Rev. B 58, 15620 (1998).CrossRefGoogle Scholar
65.Harima, H.: FLAPW band structure calculation and fermi surface for LaFe4P12. J. Magn. Magn. Mater. 177, 321 (1998).CrossRefGoogle Scholar
66.Shi, X., Zhang, W., Chen, L.D., and Yang, J.: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).CrossRefGoogle ScholarPubMed
67.Shi, X., Zhang, W., Chen, L.D., Yang, J., and Uher, C.: Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 75, 235208 (2007).CrossRefGoogle Scholar
68.Jiong, L., Xi, Yang, Zhang, W., Chen, L., and Yang, Jihui: Electrical transport properties of filled CoSb3 skutterudites: A theoretical study. J. Electron. Mater. 38, 1397 (2009).Google Scholar
69.Mei, Z.G., Zhang, W., Chen, L.D., and Yang, J.: Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach. Phys. Rev. B 74, 153202 (2006).CrossRefGoogle Scholar
70.Zhang, W., Shi, X., Mei, Z.G., Xu, Y., Chen, L.D., Yang, J., and Meisner, G.P.: Predication of an ultrahigh filling fraction for K in CoSb3. Appl. Phys. Lett. 89, 112105 (2006).CrossRefGoogle Scholar
71.Mei, Z.G., Yang, J., Pei, Y.Z., Zhang, W., and Chen, L.D.: Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials: Theoretical study. Phys. Rev. B 77, 045202 (2008).CrossRefGoogle Scholar
72.Shi, X., Zhang, W., Chen, L.D., Yang, J., and Uher, C.: Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Mater. 56, 1733 (2008).CrossRefGoogle Scholar
73.Shi, X., Zhang, W., Chen, L.D., and Uher, C.: Phase-diagram-related problems in thermoelectric materials: Skutterudites as an example. Inter. J. Mater. Res. 99, 638 (2008).CrossRefGoogle Scholar
74.Li, H., Tang, X.F., Zhang, Q.J., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
75.Bai, S.Q., Pei, Y.Z., Chen, L.D., Zhang, W.Q., Zhao, X.Y., and Yang, J.: Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57, 3135 (2009).CrossRefGoogle Scholar
76.Goldsmid, H.J.: Electronic Refrigeration (Pion Limited, London, 1986).Google Scholar
77.Yang, J., Zhang, W., Bai, S.Q., Mei, Z., and Chen, L.D.: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
78.Dimitrov, K., Manley, M.E., Shapiro, S. M., Yang, J., Zhang, W., Chen, L.D., Jie, Q., Ehlers, G., Podlesnyak, A., Camacho, J., and Li, Q.: Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12. Phys. Rev. B 82, 174301 (2010).CrossRefGoogle Scholar
79.Keppens, V., Mandrus, D., Sales, B.C., Chakoumakos, B.C., Dai, P., Coldea, R., Maple, M.B., Gajewski, D.A., Freeman, E.J., and Bennington, S.: Localized vibrational modes in metallic solids. Nature 395, 876 (1998).CrossRefGoogle Scholar
80.Hermann, R.P., Jin, R.J., Schweika, W., Grandjean, F., Mandrus, D., Sales, B.C., and Long, G.J.: Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).CrossRefGoogle ScholarPubMed
81.Long, G.J., Hermann, R.P., Grandjean, F., Alp, E.E., Sturhahn, W., Johnson, C.E., Brown, D.E., Leupold, O., and Rüffer, R.: Strongly decoupled europium and iron vibrational modes in filled skutterudites. Phys. Rev. B 71, 140302(R) (2005).CrossRefGoogle Scholar
82.Feldman, J.L., Dai, P., Enck, T., Sales, B.C., Mandrus, D., and Singh, D.J.: Lattice vibrations in La(Ce)Fe4Sb12 and CoSb3: Inelastic neutron scattering and theory. Phys. Rev. B 73, 014306 (2006).CrossRefGoogle Scholar
83.Wille, H.-C., Hermann, R.P., Sergueev, I., Leupold, O., van der Linden, P., Sales, B.C., Grandjean, F., Long, G.J., Rüffer, R., and Shvyd’ko, Yu.V.: Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering. Phys. Rev. B 76, 140301(R) (2007).CrossRefGoogle Scholar
84.Koza, M.M., Johnson, M.R., Viennois, R., Mutka, H., Girard, L., and Ravot, D.: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805 (2008).CrossRefGoogle Scholar
85.Nolas, G.S., Slack, G.A., Caillat, T., and Meisner, G.P.: Raman scattering study of antimon-ybased skutterudites. J. Appl. Phys. 79, 2622 (1996).CrossRefGoogle Scholar
86.Nolas, G.S. and Kendziora, C.A.: Raman spectroscopy investigation of lanthanide-filled and unfilled skutterudites. Phys. Rev. B 59, 6189 (1999).CrossRefGoogle Scholar
87.Sekine, C., Saito, H., Uchiumi, T., Sakai, A., and Shirotani, I.: Micro-probed Raman scattering study of ternary ruthenium phosphides with filled skutterudite-type structure. Solid State Commun. 106, 441 (1998).CrossRefGoogle Scholar
88.Xi, L., Yang, J., Zhang, W., Chen, L., and Yang, J.: Anomalous dual-element filling in partially filled skutterudites. J. Am. Chem. Soc. 131, 5560 (2009).CrossRefGoogle ScholarPubMed
89.Xi, L., Yang, J., Lu, C., Mei, Z., Zhang, W., and Chen, L.: Systematic study of the multiple-element filling in caged skutterudite CoSb3. Chem. Mater. 22, 2384 (2010).CrossRefGoogle Scholar
90.Li, D., Yang, K., Hng, H.H., Yan, Q.Y., Ma, J., Zhu, T.J., and Zhao, X.B.: Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12. J. Phys. D: Appl. Phys. 42, 105408 (2009).CrossRefGoogle Scholar
91.Rogl, G., Grytsiv, A., Bauer, E., Rogl, P., and Zehetbauer, M.: Structural and physical properties of n-type skutterudite Ca0.07Ba0.23Co3.95Ni0.05Sb12. Intermetallics 18, 394 (2010).CrossRefGoogle Scholar
92.Salvador, J.R., Yang, J., Wang, H., and Shi, X.: Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and properties. J. Appl. Phys. 107, 043705 (2010).CrossRefGoogle Scholar
93.Bai, S.Q., Shi, X., and Chen, L.D.: Lattice thermal transport in BaxREyCo4Sb12 (RE=Ce, Yb, and Eu) double-filled skutterudites. Appl. Phys. Lett. 96, 202102 (2010).CrossRefGoogle Scholar
94.Bai, S.Q., Huang, X.Y., Chen, L.D., Zhang, W., Zhao, X.Y., and Zhou, Y.F.: Thermoelectric properties of n-type SrxMyCo4Sb12 (M=Yb, Ba) double-filled skutterudites. Appl. Phys. A Mater. Sci. Process 100, 1109 (2010).CrossRefGoogle Scholar
95.Zhao, W.Y., Wei, P., Zhang, Q.J., Dong, C.L., Liu, L.S., and Tang, X.F.: Enhanced thermoelectric performance in Barium and Indium double-filled skutterudite bulk materials via orbital hybridization induced by Indium filler. J. Am. Chem. Soc. 131, 3713 (2009).CrossRefGoogle ScholarPubMed
96.Shi, X., Salvador, J.R., Yang, J., and Wang, H.: Thermoelectric properties of n-type multiple-filled skutterudites. J. Electron. Mater. 38, 930 (2009).CrossRefGoogle Scholar
97.Zhang, L., Grytsiv, A., Rogl, P., Bauer, E., and Zehetbauer, M.: High thermoelectric performance of triple-filled n-type skutterudites (Sr, Ba, Yb)yCo4Sb12. J. Phys. D: Appl. Phys. 42, 225405 (2009).CrossRefGoogle Scholar