Skip to main content

Role of hierarchical morphology of helical carbon nanotube bundles on thermal expansion of polymer nanocomposites

  • Oleksandr G. Kravchenko (a1), Xin Qian (a1), Sergii G. Kravchenko (a2), Rocio Misiego (a3), R. Byron Pipes (a4) and Ica Manas-Zloczower (a1)...

The thermal expansion behavior of polymer carbon nanotube (CNT) nanocomposites was investigated, and a micromechanical model was proposed to explain the highly nonlinear dependence of the coefficient of thermal expansion of the nanocomposite with CNT content for the CNT/polyimide nanocomposite. The microscopic analysis of CNT/polyimide matrix showed homogeneous dispersion of bundles composed of CNTs. Therefore, the proposed model to predict the thermal expansion behavior of the nanocomposite considered a random, homogeneous distribution of CNT bundles with a hierarchical arrangement of helical CNTs within the polymeric matrix. The CNT bundle morphology influenced the thermal expansion response of the nanocomposite through (i) bundle volume fraction and (ii) degree of helicity, affecting thermo-mechanical properties of the bundle. The effective, homogenized, properties of CNT bundles were determined by the elasticity based solution of the layered cylinder model. Bundle effective properties were used in the micromechanical model implementing the homogenized strain rule of the mixture expression to predict the thermal expansion behavior of nanocomposite in a wide range of CNT volume contents. The proposed micromechanical analytical model was found to correlate closely with the experimental results for polyimide/CNT nanocomposite films as measured using a digital image correlation method.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Linda S. Schadler

Hide All
1. Qian H., Greenhalgh E.S., Shaffer M.S.P., and Bismarck A.: Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 20, 47514762 (2010).
2. Kravchenko O.G., Misiego R., Qian X., Kravchenko S.G., Pips R.B., and Manas-Zloczower I.: Relation between morphology and thermo-elastic properties of carbon nanotube polymer/carbon fiber hybrid composites. In Proc. Am. Soc. Compos. Tech. Conf., 31st (American Society for Composites, Williamsburg, 2016).
3. Wang S., Liang Z., Gonnet P., Liao Y-H., Wang B., and Zhang C.: Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv. Funct. Mater. 17, 8792 (2007).
4. Jiang X., Bin Y., and Matsuo M.: Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46, 74187424 (2005).
5. Hou T.H., Johnston N.J., and Clair T.L.S.: IM7/LARCTM-IA polyimide composites. High Perform. Polym. 7, 105124 (1995).
6. Misiego C.R. and Pipes R.B.: Dispersion and its relation to carbon nanotube concentration in polyimide nanocomposites. Compos. Sci. Technol. 85, 4349 (2013).
7. Ogasawara T., Ishida Y., Ishikawa T., and Yokota R.: Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Composites, Part A 35, 6774 (2004).
8. Paiva M.C., Zhou B., Fernando K.A.S., Lin Y., Kennedy J.M., and Sun Y-P.: Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42, 28492854 (2004).
9. Guo H., Sreekumar T.V., Liu T., Minus M., and Kumar S.: Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 46, 30013005 (2005).
10. Fisher F.T., Bradshaw R.D., and Brinson L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 46474649 (2002).
11. Pipes R.B. and Hubert P.: Helical carbon nanotube arrays: Mechanical properties. Compos. Sci. Technol. 62, 419428 (2002).
12. Shi D-L., Feng X-Q., Huang Y.Y., Hwang K-C., and Gao H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250257 (2004).
13. Misiego Arpa C.R.: Carbon nanotube dispersion and characteristics: Thermomechanical properties and conductivity of polyimide nanocomposites. PhD dissertation, Purdue University, West Lafeyette (2012).
14. Kravchenko O.G., Misiego C.R., Kravchenko S.G., Pipes R.B., and Manas-Zloczower I.: Modeling of hierarchical morphology of carbon nanotube bundles in polymer composites. Macromol. Theory Simul. 26, 524532 (2016).
15. Kravchenko O.G., Kravchenko S.G., Casares A., and Pipes R.B.: Digital image correlation measurement of resin chemical and thermal shrinkage after gelation. J. Mater. Sci. 50, 52445252 (2015).
16. Park C., Ounaies Z., Watson K.A., Crooks R.E., Smith J. Jr., Lowther S.E., Connell J.W., Siochi E.J., Harrison J.S., and Clair T.L.S.: Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364, 303308 (2002).
17. Eberl C., Gianola D., and Bundschuh S.: Digital image correlation and tracking. (2010).
18. Kravchenko O.G., Li C., Strachan A., Kravchenko S.G., and Pipes R.B.: Prediction of the chemical and thermal shrinkage in a thermoset polymer. Composites, Part A 66, 3543 (2014).
19. Agius S.L., Joosten M., Trippit B., Wang C.H., and Hilditch T.: Rapidly cured epoxy/anhydride composites: Effect of residual stress on laminate shear strength. Composites, Part A 90, 125136 (2016).
20. Zhao L.G., Warrior N.A., and Long A.C.: A micromechanical study of residual stress and its effect on transverse failure in polymer–matrix composites. Int. J. Solids Struct. 43, 54495467 (2006).
21. Mo T-C., Wang H-W., Chen S-Y., and Yeh Y-C.: Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polym. Compos. 29, 451457 (2008).
22. Siochi E.J., Working D.C., Park C., Lillehei P.T., Rouse J.H., Topping C.C., Bhattacharyya A.R., and Kumar S.: Melt processing of SWCNT-polyimide nanocomposite fibers. Composites, Part B 35, 439446 (2004).
23. Yuen S-M., Ma C-C.M., Chiang C-L., Lin Y-Y., and Teng C-C.: Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J. Polym. Sci., Part A: Polym. Chem. 45, 33493358 (2007).
24. E37 Committee: Test method for assignment of the glass transition temperatures by differential scanning calorimetry. J. ASTM Int. ASTM E1356-08, 2014 (1900).
25. Schapery R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380404 (1968).
26. Yosida Y.: High-temperature shrinkage of single-walled carbon nanotube bundles up to 1600 K. J. Appl. Phys. 87, 33383341 (2000).
27. Ruoff R.S. and Lorents D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925930 (1995).
28. Nan C-W., Shen Y., and Ma J.: Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131151 (2010).
29. Pipes R.B. and Hubert P.: Helical carbon nanotube arrays: Thermal expansion. Compos. Sci. Technol. 63, 15711579 (2003).
30. Tsai S.W., Halpin J.C., and Pagano N.J.: Composite Materials Workshop (1968).
31. Hashin Z.: Analysis of composite materials—A survey. J. Appl. Mech. 50, 481505 (1983).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 197 *
Loading metrics...

* Views captured on Cambridge Core between 19th June 2017 - 20th November 2017. This data will be updated every 24 hours.