Skip to main content
×
Home
    • Aa
    • Aa

Role of hierarchical morphology of helical carbon nanotube bundles on thermal expansion of polymer nanocomposites

  • Oleksandr G. Kravchenko (a1), Xin Qian (a1), Sergii G. Kravchenko (a2), Rocio Misiego (a3), R. Byron Pipes (a4) and Ica Manas-Zloczower (a1)...
Abstract
Abstract

The thermal expansion behavior of polymer carbon nanotube (CNT) nanocomposites was investigated, and a micromechanical model was proposed to explain the highly nonlinear dependence of the coefficient of thermal expansion of the nanocomposite with CNT content for the CNT/polyimide nanocomposite. The microscopic analysis of CNT/polyimide matrix showed homogeneous dispersion of bundles composed of CNTs. Therefore, the proposed model to predict the thermal expansion behavior of the nanocomposite considered a random, homogeneous distribution of CNT bundles with a hierarchical arrangement of helical CNTs within the polymeric matrix. The CNT bundle morphology influenced the thermal expansion response of the nanocomposite through (i) bundle volume fraction and (ii) degree of helicity, affecting thermo-mechanical properties of the bundle. The effective, homogenized, properties of CNT bundles were determined by the elasticity based solution of the layered cylinder model. Bundle effective properties were used in the micromechanical model implementing the homogenized strain rule of the mixture expression to predict the thermal expansion behavior of nanocomposite in a wide range of CNT volume contents. The proposed micromechanical analytical model was found to correlate closely with the experimental results for polyimide/CNT nanocomposite films as measured using a digital image correlation method.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ogkravche@gmail.com
Footnotes
Hide All

Contributing Editor: Linda S. Schadler

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Qian , E.S. Greenhalgh , M.S.P. Shaffer , and A. Bismarck : Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 20, 47514762 (2010).

S. Wang , Z. Liang , P. Gonnet , Y-H. Liao , B. Wang , and C. Zhang : Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv. Funct. Mater. 17, 8792 (2007).

T.H. Hou , N.J. Johnston , and T.L.S. Clair : IM7/LARCTM-IA polyimide composites. High Perform. Polym. 7, 105124 (1995).

C.R. Misiego and R.B. Pipes : Dispersion and its relation to carbon nanotube concentration in polyimide nanocomposites. Compos. Sci. Technol. 85, 4349 (2013).

T. Ogasawara , Y. Ishida , T. Ishikawa , and R. Yokota : Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Composites, Part A 35, 6774 (2004).

M.C. Paiva , B. Zhou , K.A.S. Fernando , Y. Lin , J.M. Kennedy , and Y-P. Sun : Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42, 28492854 (2004).

H. Guo , T.V. Sreekumar , T. Liu , M. Minus , and S. Kumar : Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 46, 30013005 (2005).

F.T. Fisher , R.D. Bradshaw , and L.C. Brinson : Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 46474649 (2002).

R.B. Pipes and P. Hubert : Helical carbon nanotube arrays: Mechanical properties. Compos. Sci. Technol. 62, 419428 (2002).

D-L. Shi , X-Q. Feng , Y.Y. Huang , K-C. Hwang , and H. Gao : The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250257 (2004).

O.G. Kravchenko , S.G. Kravchenko , A. Casares , and R.B. Pipes : Digital image correlation measurement of resin chemical and thermal shrinkage after gelation. J. Mater. Sci. 50, 52445252 (2015).

C. Park , Z. Ounaies , K.A. Watson , R.E. Crooks , J. Smith Jr., S.E. Lowther , J.W. Connell , E.J. Siochi , J.S. Harrison , and T.L.S. Clair : Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364, 303308 (2002).

O.G. Kravchenko , C. Li , A. Strachan , S.G. Kravchenko , and R.B. Pipes : Prediction of the chemical and thermal shrinkage in a thermoset polymer. Composites, Part A 66, 3543 (2014).

S.L. Agius , M. Joosten , B. Trippit , C.H. Wang , and T. Hilditch : Rapidly cured epoxy/anhydride composites: Effect of residual stress on laminate shear strength. Composites, Part A 90, 125136 (2016).

L.G. Zhao , N.A. Warrior , and A.C. Long : A micromechanical study of residual stress and its effect on transverse failure in polymer–matrix composites. Int. J. Solids Struct. 43, 54495467 (2006).

E.J. Siochi , D.C. Working , C. Park , P.T. Lillehei , J.H. Rouse , C.C. Topping , A.R. Bhattacharyya , and S. Kumar : Melt processing of SWCNT-polyimide nanocomposite fibers. Composites, Part B 35, 439446 (2004).

S-M. Yuen , C-C.M. Ma , C-L. Chiang , Y-Y. Lin , and C-C. Teng : Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J. Polym. Sci., Part A: Polym. Chem. 45, 33493358 (2007).

R.A. Schapery : Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380404 (1968).

Y. Yosida : High-temperature shrinkage of single-walled carbon nanotube bundles up to 1600 K. J. Appl. Phys. 87, 33383341 (2000).

R.S. Ruoff and D.C. Lorents : Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925930 (1995).

C-W. Nan , Y. Shen , and J. Ma : Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131151 (2010).

R.B. Pipes and P. Hubert : Helical carbon nanotube arrays: Thermal expansion. Compos. Sci. Technol. 63, 15711579 (2003).

Z. Hashin : Analysis of composite materials—A survey. J. Appl. Mech. 50, 481505 (1983).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 28 *
Loading metrics...

* Views captured on Cambridge Core between 19th June 2017 - 28th June 2017. This data will be updated every 24 hours.