Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T01:13:37.580Z Has data issue: false hasContentIssue false

Size-, shape-, and orientation-dependent properties of SiC nanowires of selected bulk polytypes

Published online by Cambridge University Press:  02 August 2012

Ming Yu*
Affiliation:
Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292
C.S. Jayanthi
Affiliation:
Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292
S.Y. Wu
Affiliation:
Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292
*
a)Address all correspondence to this author. e-mail: m0yu0001@louisville.edu
Get access

Abstract

SiC nanowires (NWs) designed from selected bulk polytypes are investigated using quantum mechanics-based simulations (both ab initio and semiempirical methods), and their structure–property relationships examined vis-à-vis their size, shape, and orientation. It is found that 2H–SiC NWs of hexagonal morphology oriented along the <0001> direction are the most stable ones compared to NWs designed using other bulk polytypes (e.g., 3C, 4H, or 6H) and other morphologies (round, square, rhombus, etc.) for diameters with 1 nm < d < 14 nm. Based on the electronic density calculations, it is found that 2H–SiC <0001> NWs exhibit semiconductor-like characteristics (akin to their bulk counterparts), even when their diameters approach 1 nm. On the other hand, SiC NWs designed from 3C, 4H, and 6H bulk polytypes, regardless of their morphology, exhibit gapless features for diameters less than 3.5 nm. Undoubtedly, these novel properties of SiC NWs can be exploited in the fabrication of nanoscale devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lindefelt, U.: A model for doping-induced band gap narrowing in 3C-, 4H, and 6H-SiC. Mater. Sci. Eng., B 6162, 225 (1999).Google Scholar
van Haeringen, W., Bobbert, P.A., and Backes, W.H.: On the band gap variation in SiC polytypes. Phys. Status Solidi B 202, 63 (1997).Google Scholar
Matos, M.: Electronic structure of several polytypes of SiC: A study of band dispersion from a semi-empirical approach. Physica B 324, 15 (2002).Google Scholar
Sun, X-H., Li, C-P., Wong, W-K., Wong, N-B., Lee, C-S., Lee, S-T., and Teo, B-K.: Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124, 14464 (2002).Google Scholar
Zhou, X.T., Wang, N., Lai, H.L., Peng, H.Y., Bello, I., Wong, N.B., Lee, C.S., and Lee, S.T.: β-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl. Phys. Lett. 74, 3942 (1999).Google Scholar
Zhou, W., Liu, X., and Zhang, Y.: Simple approach to β –SiC nanowires: Synthesis, optical, and electrical properties. Appl. Phys. Lett. 89, 223124 (2006).Google Scholar
Lin, M., Ping Loh, K., Boothroyd, C., and Du, A.: Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones. Appl. Phys. Lett. 85, 5388 (2004).CrossRefGoogle Scholar
Kohno, H. and Yoshida, H.: SiC nanowires with self-affine, rough surfaces. Physica B 376377, 890 (2006).Google Scholar
Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Qian, Y.T., Yu, W.C., Zhou, G.E., Liu, X.M., and Wu, J.X.: Synthesis and characterization of SiC nanowires through a reduction-carburization route. J. Phys. Chem. B 104, 5251 (2000).Google Scholar
Li, H.J., Li, Z.J., Meng, A.L., Li, K.L., Zhang, X.N., and Xu, Y.P.: SiC nanowire networks. J. Alloys Compd. 352, 279 (2003).Google Scholar
Li, Z.J., Li, H.J., Chen, X.L., Meng, A.L., Li, K.Z., Xu, Y.P., and Dai, L.: Large-scale synthesis of crystalline β –SiC nanowires. Appl. Phys. A 76, 637 (2003).Google Scholar
Kang, B-C., Lee, S-B., and Boo, J-H.: Growth of β –SiC nanowires on Si (001) substrates by MOCVD using nickel as a catalyst. Thin Solid Films 464465, 215 (2004).CrossRefGoogle Scholar
Pan, Z., Lai, H-L., Au, F.C.K., Duan, X., Zhou, W., Shi, W., Wang, N., Lee, C-S., Wong, N-B., Lee, S-T., and Xie, S.: Oriented silicon carbide nanowires: Synthesis and filed emission properties. Adv. Mater. 12, 1186 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
Baek, Y., Ryu, Y.H., and Yong, K.: Structural characterization of β –SiC nanowires synthesized by direct heating method. Mater. Sci. Eng., C 26, 805 (2006).Google Scholar
Zhou, W.M., Yang, B., Yang, Z.X., Zhu, F., Yan, L.J., and Zhang, Y.F.: Large-scale synthesis and characterization of SiC nanowire by high-frequency induced heating. Appl. Surf. Sci. 252, 5143 (2006).CrossRefGoogle Scholar
Zhu, S., Xi, H-A., Li, Q., and Wang, R.: In situ growth of β –SiC nanowires in porous SiC ceramics. J. Am. Ceram. Soc. 88, 2619 (2005).CrossRefGoogle Scholar
Ye, H., Titchenal, N., Gogotsi, Y., and Ko, F.: SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 17, 1531 (2005).Google Scholar
Zhang, Y., Han, X., Zheng, K., Zhang, Z., Zhang, X., Fu, J., Ji, Y., Hao, Y., Guo, X., and Wang, Z.: Direct observation of Super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 17, 3435 (2007).Google Scholar
Zhou, W., Sun, K., Muñoz, E., Dalton, A.B., Collin, S., Wang, L.M., Zakhidov, A.A., and Baughman, R.H.: Nanostructure and EELS characterization of catalyst assisted SiC nanorods generated from single-walled carbon nanotubes. Microsc. Microanal. 9(Suppl 2), 334 (2003).Google Scholar
Nhuapeng, W., Thamjaree, W., Kumfu, S., Singjai, P., and Tunkasiri, T.: Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites. Curr. Appl Phys. 8, 295 (2008).Google Scholar
Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Zhang, Z., Hao, Y.J., Guo, X.Y., Yuan, J., and Wang, Z.L.: Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452 (2007).CrossRefGoogle ScholarPubMed
Niu, J.J., Wang, J.N., and Xu, N.S.: Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor-solid reaction. Solid State Sci. 10, 618 (2008).Google Scholar
Kim, T.Y., Han, S.S., and Lee, H.M.: Nanomechanical behavior of β –SiC nanowire in Tensin: Molecular dynamics simulations. Mater. Trans. 45, 1442 (2004).Google Scholar
Makeev, M.A., Srivastava, D., and Menon, M.: Silicon carbide nanowires under external loads: An atomistic simulation study. Phys. Rev. B 74, 165303 (2006).Google Scholar
Rurali, R.: Electronic and structural properties of silicon carbide nanowires. Phys. Rev. B 71, 205405 (2005).Google Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plan-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
Kresse, G.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Leahy, C., Yu, M., Jayanthi, C.S., and Wu, S.Y.: Coherent treatment of the self-consistency and the environment-dependency in a semi-empirical Hamiltonian: Applications to bulk silicon, silicon surfaces, and silicon clusters. Phys. Rev. B 74, 155408 (2006).Google Scholar
Wu, S.Y., Jayanthi, C.S., Leahy, C., and Yu, M.: Towards a cohesive treatment of the self-consistency and environment-dependency in semi-empirical Hamiltonian for materials simulations. in Hand book of Materials Modeling, edited by Yip, S. (Springer, Dordrecht, Netherlands, 2005).Google Scholar
Yu, M., Wu, S.Y., and Jayanthi, C.S.: A self-consistent and environment-dependent Hamiltonian for large-scale simulations of complex nanostructures. Physica E 42, 1 (2009).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).Google Scholar
Laasonen, K., Car, R., Lee, C., and Vanderbilt, D.: Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43, 6796 (1991).Google Scholar
Laasonen, K., Pasquarello, A., Car, R., Lee, C., and Vanderbilt, D.: Car Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47, 10142 (1993).CrossRefGoogle ScholarPubMed
Wang, Y. and Perdew, J.P.: Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298 (1991).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
Jayanthi, C.S., Wu, S.Y., Cocks, J., Luo, N.S., Xie, Z.L., Menon, M., and Yang, G.: Order-N method for a nonorthogonal tight-binding Hamiltonian. Phys. Rev. B 57, 3799 (1998).Google Scholar
Wu, S.Y. and Jayanthi, C.S.: Order-N methodologies and their applications. Phys. Rep. 358, 1 (2002).Google Scholar
Bimburg, D., Blachnik, R., Cardona, M., Dean, P.J., Grave, T., Harbeke, G., Hüber, K., Kaufmann, U., Kress, W., von Münch, W., Rössler, U., Schneider, J., Schulz, M., Skolnick, M.S., and Madelung, O.. Physics of Group IV Elements and III-V Compounds, edited by Madelung, O., Landolt-Bürnstein, , New Series, Group III, Vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).Google Scholar
Ramachandran, V. and Feenstra, R.M.: Scanning tunneling spectroscopy of Mott-Hubbard states on the 6H-SiC (0001) √3 × √3 surface. Phys. Rev. Lett. 82, 1000 (1999).Google Scholar
Yu, M., Jayanthi, C.S., and Wu, S.Y.: Geometric and electronic structures of graphitic-like and tubular silicon carbides: Ab-initio studies. Phys. Rev. B 82, 075407 (2010).Google Scholar
Yu, M., Chaudhuri, I., Leahy, C., Wu, S.Y., and Jayanthi, C.S.: Energetic, relative stabilities and size-dependent properties of nanosized carbon clusters of different families: Fullerenes, bucky-diamond, icosahedral, and bulk-truncated structures. J. Chem. Phys. 130, 184708 (2009).Google Scholar
Tian, W.Q., Yu, M., Leahy, C., Jayanthi, C.S., and Wu, S.Y.: The self-consistent and environment-dependent Hamiltonian and its application to carbon nanoparticles. J. Comput. Theor. Nanosci. 6, 390, (2009).Google Scholar