Skip to main content
×
×
Home

Spray pyrolysis of YBCO precursors

  • Gideon S. Grader (a1), Darío R. Machado (a1) and Raphael Semiat (a1)
Abstract

Acetate, nitrate, and oxalate precursors for YBCO have been spray pyrolyzed under different conditions. Shelled and nonhollow microparticles were obtained from acetate and nitrate precursors, while nonhollow agglomerates were obtained from the oxalate suspension. At low furnace temperatures, the temperature and residence time of the particles were insufficient for complete decomposition of the precursors leading to Cu2O and Cu metal in the product. At 900 °C and above, reduced forms of CuO were not detected by x-ray measurements, and up to ∼60 wt.% YBCO was obtained. An approximate model predicting the particle and gas temperatures along the reactor under different operating conditions was developed. The model demonstrates that under the experimental conditions used here, the absorbed radiation heat by the particles from the furnace walls is significant in heating the gas. The gas and the particle temperatures are fairly close due to the effective heat transfer to the particles. At furnace temperatures of 700 °C, the maximum predicted particle temperature is about 500 °C (for ∼1 s). This explains the incomplete reactions obtained under these conditions. Above 900 °C the reactions are predicted to be complete within the first half of the furnace, leaving sufficient residence time for partial conversion into YBCO. Finally, an approximate expression predicting the relative contribution to the gas heating by the walls and the aerosol has been developed.

Copyright
References
Hide All
1Cava R. J., Batlogg B., van Dover R. B., Murphy D. W., Sunshine S., Siegrist T., Remeika J. P., Rietman E. A., Zahurak S., and Espinosa G. P., Phys. Rev. Lett. 58, 1676 (1987).
2Frase K. G. and Clarke D. R., Adv. Ceram. Mat. 2, 295 (1987).
3Ling H. C., J. Mater. Sci. 25, 3297 (1990).
4Naveh J. and Pelly J., Mater. Res. Bull. XXIV, 283 (1989).
5Shter G. E. and Grader G. S., J. Am. Ceram. Soc. (1994, in press).
6Kodas T. T., Angew. Chem. Int. Ed. Engl. Adv. Mater. 28 (6), 794 (1989).
7Sproson D. W., Messing G. L., and Gardner T. J., Ceram. Int. 12, 3 (1986).
8Ruthner M. J., in Ceramic Powders, edited by Vincenzini P. (Elsevier, Amsterdam, 1983), pp. 515531.
9Awano M., Takao Y., Kani K., and Takagi H., J. Chem. Eng. Jpn. 25 (5), 508 (1992).
10Kodas T. T., Lee V. Y., and Engler E. M., Appl. Phys. Lett. 54, 1923 (1989).
11Pebler A. and Charles R. G., Mater. Res. Bull. XXIV, 1069 (1989).
12Tohge N., Tatsumisago M., Minami T., Okuyama K., Adachi M., and Kousaka Y., Jpn. J. Appl. Phys. 7, L292 (1988).
13Zhou D., Biswas P., Oostens J., and Boolchand P., J. Am. Ceram. Soc. 76 (3), 678 (1993).
14Zhang S. C., Messing G. L., and Huebner W., J. Aerosol Sci. 22 (5), 585 (1991).
15Chadda S., Ward T., Carim A., Kodas T. T., Ott K., and Kroeger D., J. Aerosol Sci. 22 (5), 601 (1991).
16Kim I. T., Oh T. S., and Kim Y. H., J. Mater. Sci. 26, 6275 (1991).
17Hussain A. A. and Sayer M., J. Supercond. 4, 385 (1991).
18Biswas P., Zhou D., Zitkovsky I., Blue C., and Boolchand P., Mater. Lett. 8 (6,7), 233 (1989).
19Lakis R. E. and Butler S. R., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen D., Narayan J., and Schneemeyer L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 385.
20Tohge N., Tatsumisago M., Minami T., Okuyama K., Arai K., and Kousaka Y., Jpn. J. Appl. Phys. 28 (7), L1175 (1989).
21Kodas T. T., Carim A. H., and Ott K. C., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen D., Narayan J., and Schneemeyer L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 381.
22Charlesworth D. H. and Marshall W. R. Jr., AIChE J. 6 (1), 9 (1960).
23Messing G. L., private communication (1993).
24Okuyama K., Ushio R., Kousaka Y., Seinfeld J. H., and Flagan R. C., Int. Chem. Eng. 32 (4), 750 (1992).
25Friedlander S. K., Ann. New York Acad. Sci. 404, 354 (1983).
26Pratsinis S. E., J. Colloid Inter. Sci. 124 (2), 416 (1988).
27Zhang S. C., Messing G. L., and Borden M., J. Am. Ceram. Soc. 73 (1), 61 (1990).
28Hubbard C. R. and Snyder R. L., Powder Diff. 3 (2), 74 (1988).
29Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA (1977).
30Shelukar S. D., Sundar H.G. K., Semiat R., Richardson J. T., and Luss D., J. Am. Ceram. Soc. 76 (2), 518 (1993).
31Machado D. R., M. Sc. Thesis, Technion I.I.T., Haifa, Israel (1994).
32Masters K., Spray Drying Handbook, 4th ed. (George Godwin, London, 1985), pp. 301, 307.
33Reid R. C., Prausnitz J. M., and Poling B. E., The Properties of Gases & Liquids, 4th ed. (McGraw-Hill, New York, 1988), pp. 620, 624.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 51 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.