Skip to main content
    • Aa
    • Aa

Storage of hydrogen and lithium in inorganic nanotubes and nanowires

  • Fangyi Cheng (a1) and Jun Chen (a1)

The search for cleaner and more efficient energy storage and conversion technologies has become an urgent task due to increasing environmental issues and limited energy resources. The aim of energy storage and conversion is to obtain energy with environmental benefit, high efficiency, and low cost (namely, maximum atomic and recycling economy). Progress has been made in the fields of hydrogen storage and rechargeable batteries. The emerging nanotechnology offers great opportunities to improve the performance of existing energy storage systems. Applying nanoscale materials to energy storage offers a higher capacity compared to the bulk counterparts due to the unique properties of nanomaterials such as high surface areas, large surface-to-volume atom ratio, and size-confinement effect. In particular, one- dimensional (1D) inorganic nanostructures like tubes and wires exhibit superior electrochemical characteristics because of the combined advantages of small size and 1D morphology. Hydrogen and lithium can be stored in different 1D nanostructures in various ways, including physical and/or chemical sorption, intercalation, and electrochemical reactions. This review highlights some of the latest progress with the studies of hydrogen and lithium storage in inorganic nanotubes and nanowires such as MoS2, WS2, TiS2, BN, TiO2, MnO2, V2O5, Fe2O3, Co3O4, NiO, and SnO2.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1.Dresselhaus M.S., Thomas I.L.: Alternative energy technologies. Nature 414, 332 (2001).
2.Grätzel M.: Photoelectrochemical cells. Nature 414, 338 (2001).
3.Steele B.C.H., Heinzel A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).
4.Schlapbach L., Züttel A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).
5.Tarascon J.M., Armand M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).
6.Kang K., Meng Y.S., Bréger J., Grey C.P., Ceder G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).
7.Winter C.J., Nitsch J.: Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer-Verlag, Berlin,1988).
8.Winter M., Brodd R.J.: What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245 (2004).
9.Moriarty P.: Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001).
10.Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
11.Tenne R., Margulis L., Genut M., Hodes G.: Polyhedral and cylindrical structure of tungsten disulphide. Nature 360, 444 (1992).
12.Margulis L., Salitra G., Tenne R., Talianker M.: Nested fullerene-like structures. Nature 365, 113 (1993).
13.Feldman Y., Wasserman E., Srolovitz D.J., Tenne R.: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).
14.Patzke G.R., Krumeich F., Nesper R.: Oxidic nanotubes and nanorods– Anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41, 2446 (2002).
15.Tenne R.: Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem., Int. Ed. Engl. 42, 5124 (2003).
16.Rao C.N.R., Deepak F.L., Gundiah G., Govindaraj A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).
17.Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).
18.Remškar M.: Inorganic nanotubes. Adv. Mater. 16, 1497 (2004).
19.Hu J., Odom T.W., Lieber C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).
20.Ajayan P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).
21.Haddon R.C.: A special issue on carbon nanotubes. Acc. Chem. Res. 35, 997 (2002).
22.Pradhan B.K., Harutyunyan A.R., Stojkovic D., Grossman J.C., Zhang P., Cole M.W., Crespi V., Goto H., Fujiwara J., Eklund P.C.: Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17, 2209 (2002).
23.Haas M.K., Zielinski J.M., Dantsin G., Coe C.G., Pez G.P., Cooper A.C.: Tailoring singlewalled carbon nanotubes for hydrogen storage. J. Mater. Res. 20, 3214 (2005).
24.Seifert G., Köhler T., Tenne R.: Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497 (2002).
25.Zhu Y.Q., Sekine T., Brigatti K.S., Firth S., Tenne R., Rosentsveig R., Kroto H.W., Walton D.R.M.: Shock-wave resistance of WS2 nanotubes. J. Am. Chem. Soc. 125, 1329 (2003).
26.Rapoport L., Bilik Y., Feldman Y., Homyonfer M., Cohen S.R., Tenne R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).
27.Rapoport L., Fleischer N., Tenne R.: Fullerene-like WS2 nanoparticles: Superior lubricants for harsh conditions. Adv. Mater. 15, 651 (2003).
28.Chen J., Wu F.: Review of hydrogen storage in inorganic fullerene-like nanotubes. Appl. Phys. A 78, 989 (2004).
29.Wang X., Zhuang J., Chen J., Zhou K.B., Li Y.D.: Thermally stable silicate nanotubes. Angew. Chem., Int. Ed. Engl. 43, 2017 (2004).
30.Chen J., Li S.L., Tao Z.L., Shen Y.T., Cui C.X.: Titanium disulfide nanotubes as hydrogen-storage materials. J. Am. Chem. Soc. 125, 5284 (2003).
31.Chen J., Li S.L., Tao Z.L.: Novel hydrogen storage properties of MoS2 nanotubes. J. Alloys Compd. 356–357, 413 (2003).
32.Chen J., Kuriyama N., Yuan H.T., Takeshita H.T., Sakai T.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123, 11813 (2001).
33.Wu X., Yang J., Hou J., Zhu Q.: Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes. J. Chem. Phys. 121, 8481 (2004).
34.Wu X., Yang J., Hou J., Zhu Q.: Defects-enhanced dissociation of H2 on boron nitride nanotubes. J. Chem. Phys. 124, 054706 (2006).
35.Jhi S.H., Kwon Y.K.: Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage. Phys. Rev. B 69, 245407 (2004).
36.Han S.S., Kang J.K., Lee H.M., Duin A.C.T., Goddard W.A.: Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. J. Chem. Phys. 123, 114704 (2005).
37.Chen X., Gao X.P., Zhang H., Zhou Z., Hu W.K., Pan G.L., Zhu H.Y., Yan T.Y., Song D.Y.: Preparation and electrochemical hydrogen storage of boron nitride nanotubes. J. Phys. Chem. B 109, 11525 (2005).
38.Lim S.H., Luo J., Zhong Z., Ji W., Lin J.: Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124 (2005).
39.Bavykin D.V., Lapkin A.A., Plucinski P.K., Friedrich J.M., Walsh F.C.: Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 109, 19422 (2005).
40.Whittingham M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).
41.Linden D., Reddy T.B.: Handbook of Batteries, 3rd ed. (McGraw-Hill, New York,2002).
42.Winter M., Besenhard J.O., Spahr M.E., Novák P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998).
43.Liu H.K., Wang G.X., Guo Z.P., Wang J.Z., Konstantinov K.: Nanomaterials for lithium-ion rechargeable batteries. J. Nanosci. Nanotechnol. 6, 1 (2006).
44.Sides C.R., Li N., Patrissi C.J., Scrosati B., Martin C.R.: Nanoscale materials for lithium-ion batteries. Mater. Res. Bull. 27, 604 (2002).
45.Zak A., Feldman Y., Lyakhovitskaya V., Leitus G., Popovitz-Biro R., Wachtel E., Cohen H., Reich S., Tenne R.: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124, 4747 (2002).
46.Chen J., Tao Z.L., Li S.L.: Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem., Int. Ed. Engl. 42, 2147 (2003).
47.Chen J., Li S.L., Tao Z.L., Gao F.: Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 980 (2003).
48.Tao Z.L., Xu L.N., Gou X.L., Chen J., Yuan H.T.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 2080 (2004).
49.Dominko R., Arcon D., Mrzel A., Zorko A., Cevc P., Venturini P., Caberscek M., Remskar M., Mihailovic D.: Dichalcogenide nanotubes electrodes for Li-ion batteries. Adv. Mater. 14, 1531 (2002).
50.Wang G.X., Bewlay S., Yao J., Liu H.K., Dou S.X.: Tungsten disulfide nanotubes for lithium storage. Electrochem. Solid-State Lett. 7, A321 (2004).
51.Li X.L., Li Y.D.: MoS2 nanostructures: Synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 108, 13893 (2004).
52.Therese H.A., Rocker F., Reiber A., Li J., Stepputat M., Glasser G., Kolb U., Tremel W.: VS2 nanotubes containing organic-amine templates from the NT-VO x precursors and reversible copper intercalation in NT-VS2. Angew. Chem., Int. Ed. Engl. 44, 262 (2005).
53.Armstrong A.R., Armstrong G., Canales J., Bruce P.G.: TiO2–B nanowires. Angew. Chem., Int. Ed. Engl. 43, 2286 (2004).
54.Armstrong G., Armstrong A.R., Canales J., Bruce P.G.: Nanotubes with the TiO2–B structure. Chem. Commun. 2454 (2005).
55.Armstrong G., Armstrong A.R., Canales J., Bruce P.G.: TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett. 9, A139 (2006).
56.Armstrong A.R., Armstrong G., Canales J., Bruce P.G.: TiO2–B nanowires as negative electrodes for rechargeable lithium batteries. J. Power Sources 146, 501 (2005).
57.Zukalová M., Kalbác M., Kavan L., Exnar I., Graetzel M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).
58.Li J., Tang Z., Zhang Z.: H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 7, 62 (2005).
59.Li J., Tang Z., Zhang Z.: Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848 (2005).
60.Li J., Tang Z., Zhang Z.: Preparation and novel lithium intercalation properties of titanium oxide nanotubes. Electrochem. Solid-State Lett. 8, A316 (2005).
61.Zhou Y.K., Cao L., Zhang F.B., He B.L., Li H.L.: Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. 150, A1246 (2003).
62.Gao X., Zhu H., Pan G., Ye S., Lan Y., Wu F., Song D.: Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material. J. Phys. Chem. B 108, 2868 (2004).
63.Spahr M.E., Bitterli P., Nesper R., Müller M., Krumeich E., Nissen H.U.: Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. Engl. 37, 1263 (1998).
64.Spahr M.E., Bitterli P., Nesper R., Haas O., Novák P.: Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).
65.Patrissi C.J., Martin C.R.: Sol-gel-based template synthesis and Li-insertion rate performance of nanostructures vanadium pentoxide. J. Electrochem. Soc. 146, 3176 (1999).
66.Dobley A., Ngala K., Yang S., Zavalij P.Y., Whittingham M.S.: Manganese vanadium oxide nanotubes: Synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382 (2001).
67.Augustsson A., Schmitt T., Duda L.C., Nordgren J., Nordlinder S., Edström K., Gustafsson T., Guo J.H.: The electronic structure and lithium of electrodes based on vanadium-oxide nanotubes. J. Appl. Phys. 94, 5083 (2003).
68.Wang Y., Takahashi K., Shang H., Cao G.: Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 109, 3085 (2005).
69.Takahashi K., Wang Y., Cao G.: Ni–V2O5·nH2O core-shell nanocable arrays for enhanced electrochemical intercalation. J. Phys. Chem. B 109, 48 (2005).
70.Nordlinder S., Nyholm L., Gustafsson T., Edström K.: Lithium insertion into vanadium oxide nanotubes: Electrochemical and structural aspects. Chem. Mater. 18, 495 (2006).
71.Li H., Huang X., Chen L.: Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 123, 189 (1999).
72.Courtney I.A., Dahn J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).
73.Ying Z., Wan Q., Cao H., Song Z.T., Feng S.L.: Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Appl. Phys. Lett. 87, 113108 (2005).
74.Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).
75.Chen J., Xu L.N., Li W.Y., Gou X.L.: α–Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).
76.Li W.Y., Xu L.N., Chen J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851 (2005).
77.Li W.Y., Cheng F.Y., Tao Z.L., Chen J.: Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α–MoO3 microrods. J. Phys. Chem. B 110, 119 (2006).
78.Cheng F.Y., Zhao J.Z., Song W.E., Li C.S., Ma H., Chen J., Shen P.W.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 (2006).
79.Wu M.S., Chiang P.C.J., Lee J.T., Lin J.C.: Synthesis of manganese oxide electrodes with interconnected nanowire structures as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 (2005).
80.Wu M.S., Chiang P.C.J.: Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem. Commun. 8, 383 (2006).
81.Gao X.P., Bao J.L., Pan G.L., Zhu H.Y., Huang P.X., Wu F., Song D.Y.: Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547 (2004).
82.Sugantha M., Ramakrishnan P.A., Hermann A.M., Warmsingh C.P., Ginley D.S.: Nanostructured MnO2 for Li batteries. Int. J. Hydrogen Energy 28, 597 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 71 *
Loading metrics...

Abstract views

Total abstract views: 214 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.