Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 40
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Joshi, Anjali Singh, Narinder and Verma, Gaurav 2016. Fabrication and Self-Assembly of Nanobiomaterials.


    Bandura, Andrei V. and Evarestov, Robert A. 2015. Structure and stability of SnS2-based single- and multi-wall nanotubes. Surface Science, Vol. 641, p. 6.


    Kim, Jung Hyun Hong, Young Jun Kang, Yun Chan Choi, Yun Ju and Kim, Yang Soo 2015. Superior electrochemical properties of α-Fe2O3 nanofibers with a porous core/dense shell structure formed from iron acetylacetonate-polyvinylpyrrolidone composite fibers. Electrochimica Acta, Vol. 154, p. 211.


    Maharaj, Dave and Bhushan, Bharat 2015. Characterization of nanofriction of MoS2 and WS2 nanotubes. Materials Letters, Vol. 142, p. 207.


    Pereira, Aline O. and Miranda, Caetano R. 2015. First-Principles Investigation of Transition Metal Dichalcogenide Nanotubes for Li and Mg Ion Battery Applications. The Journal of Physical Chemistry C, Vol. 119, Issue. 8, p. 4302.


    Sokolsky, Georgii V. Ivanov, Sergiy V. Boldyrev, Eudgene I. Ivanova, Natalya D. and Kiporenko, Oksana Ya. 2015. Rechargable xLi2MnO3·(1−x)Li4/3Mn5/3O4 electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives. Materials Research Bulletin, Vol. 72, p. 133.


    Bandura, Andrei V. and Evarestov, Robert A. 2014. TiS2and ZrS2single- and double-wall nanotubes: First-principles study. Journal of Computational Chemistry, Vol. 35, Issue. 5, p. 395.


    Evarestov, Robert A and Bandura, Andrei V 2014. First-principles calculations of single-walled nanotubes in sulfides MS2(M = Ti, Zr). Physica Scripta, Vol. 89, Issue. 4, p. 044001.


    Khazaeizhad, Reza Kassani, Sahar Hosseinzadeh Jeong, Hwanseong Yeom, Dong-Il and Oh, Kyunghwan 2014. Mode-locking of Er-doped fiber laser using a multilayer MoS_2 thin film as a saturable absorber in both anomalous and normal dispersion regimes. Optics Express, Vol. 22, Issue. 19, p. 23732.


    Li, Jun Zhou, Li Zhu, Qingshan and Li, Hongzhong 2014. Decoupling reduction–sulfurization synthesis of inorganic fullerene-like WS2 nanoparticles in a particulately fluidized bed. Chemical Engineering Journal, Vol. 249, p. 54.


    Li, Jun Ma, Tian Zhou, Li Zhang, Tao Zhu, Qingshan and Li, Hongzhong 2014. Synthesis of Fullerene-like WS2Nanoparticles in a Particulately Fluidized Bed: Kinetics and Reaction Phase Diagram. Industrial & Engineering Chemistry Research, Vol. 53, Issue. 2, p. 592.


    McNulty, David Buckley, D. Noel and O'Dwyer, Colm 2014. Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. Journal of Power Sources, Vol. 267, p. 831.


    Zhang, Ning Zhao, Qing Han, Xiaopeng Yang, Jingang and Chen, Jun 2014. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, Vol. 6, Issue. 5, p. 2827.


    Huo, Nengjie Yue, Qu Yang, Juehan Yang, Shengxue and Li, Jingbo 2013. Abnormal Photocurrent Response and Enhanced Photocatalytic Activity Induced by Charge Transfer between WS2Nanosheets and WO3Nanoparticles. ChemPhysChem, Vol. 14, Issue. 18, p. 4069.


    Jiang, Chunhai and Zhang, Jinsong 2013. Nanoengineering Titania for High Rate Lithium Storage: A Review. Journal of Materials Science & Technology, Vol. 29, Issue. 2, p. 97.


    Li, Peng Wang, Dingsheng Peng, Qing and Li, Yadong 2013. Interface-Mediated Synthesis of Transition-Metal (Mn, Co, and Ni) Hydroxide Nanoplates. Crystal Growth & Design, Vol. 13, Issue. 5, p. 1949.


    Shen, Chih-Chiang Hsu, Yu-Te Li, Lain-Jong and Liu, Hsiang-Lin 2013. Charge Dynamics and Electronic Structures of Monolayer MoS2Films Grown by Chemical Vapor Deposition. Applied Physics Express, Vol. 6, Issue. 12, p. 125801.


    Azzouz, Abdelkrim 2012. Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio – Prospects for Si-containing matrices. International Journal of Hydrogen Energy, Vol. 37, Issue. 6, p. 5032.


    Chou, Shu-Lei Wang, Jia-Zhao Liu, Hua-Kun and Dou, Shi-Xue 2012. Controlled Nanofabrication.


    Kidd, Timothy E. O’Shea, Aaron Griffith, Zach Leslie, Stroh Shand, Paul M. Boyle, Kayla R. and Strauss, Laura H. 2012. Synthesis of magnetic 1D dichalcogenide nanostructures. Journal of Nanoparticle Research, Vol. 14, Issue. 6,


    ×

Storage of hydrogen and lithium in inorganic nanotubes and nanowires

  • Fangyi Cheng (a1) and Jun Chen (a1)
  • DOI: http://dx.doi.org/10.1557/jmr.2006.0337
  • Published online: 03 March 2011
Abstract

The search for cleaner and more efficient energy storage and conversion technologies has become an urgent task due to increasing environmental issues and limited energy resources. The aim of energy storage and conversion is to obtain energy with environmental benefit, high efficiency, and low cost (namely, maximum atomic and recycling economy). Progress has been made in the fields of hydrogen storage and rechargeable batteries. The emerging nanotechnology offers great opportunities to improve the performance of existing energy storage systems. Applying nanoscale materials to energy storage offers a higher capacity compared to the bulk counterparts due to the unique properties of nanomaterials such as high surface areas, large surface-to-volume atom ratio, and size-confinement effect. In particular, one- dimensional (1D) inorganic nanostructures like tubes and wires exhibit superior electrochemical characteristics because of the combined advantages of small size and 1D morphology. Hydrogen and lithium can be stored in different 1D nanostructures in various ways, including physical and/or chemical sorption, intercalation, and electrochemical reactions. This review highlights some of the latest progress with the studies of hydrogen and lithium storage in inorganic nanotubes and nanowires such as MoS2, WS2, TiS2, BN, TiO2, MnO2, V2O5, Fe2O3, Co3O4, NiO, and SnO2.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: chenabc@nankai.edu.cn
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.M.S. Dresselhaus , I.L. Thomas : Alternative energy technologies. Nature 414, 332 (2001).

2.M. Grätzel : Photoelectrochemical cells. Nature 414, 338 (2001).

3.B.C.H. Steele , A. Heinzel : Materials for fuel-cell technologies. Nature 414, 345 (2001).

4.L. Schlapbach , A. Züttel : Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).

5.J.M. Tarascon , M. Armand : Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

6.K. Kang , Y.S. Meng , J. Bréger , C.P. Grey , G. Ceder : Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).

7.C.J. Winter , J. Nitsch : Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer-Verlag, Berlin,1988).

8.M. Winter , R.J. Brodd : What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245 (2004).

9.P. Moriarty : Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001).

10.S. Iijima : Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

11.R. Tenne , L. Margulis , M. Genut , G. Hodes : Polyhedral and cylindrical structure of tungsten disulphide. Nature 360, 444 (1992).

12.L. Margulis , G. Salitra , R. Tenne , M. Talianker : Nested fullerene-like structures. Nature 365, 113 (1993).

13.Y. Feldman , E. Wasserman , D.J. Srolovitz , R. Tenne : High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).

14.G.R. Patzke , F. Krumeich , R. Nesper : Oxidic nanotubes and nanorods– Anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41, 2446 (2002).

15.R. Tenne : Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem., Int. Ed. Engl. 42, 5124 (2003).

16.C.N.R. Rao , F.L. Deepak , G. Gundiah , A. Govindaraj : Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).

17.Y. Xia , P. Yang , Y. Sun , Y. Wu , B. Mayers , B. Gates , Y. Yin , F. Kim , H. Yan : One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

18.M. Remškar : Inorganic nanotubes. Adv. Mater. 16, 1497 (2004).

19.J. Hu , T.W. Odom , C.M. Lieber : Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).

20.P.M. Ajayan : Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).

21.R.C. Haddon : A special issue on carbon nanotubes. Acc. Chem. Res. 35, 997 (2002).

22.B.K. Pradhan , A.R. Harutyunyan , D. Stojkovic , J.C. Grossman , P. Zhang , M.W. Cole , V. Crespi , H. Goto , J. Fujiwara , P.C. Eklund : Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17, 2209 (2002).

23.M.K. Haas , J.M. Zielinski , G. Dantsin , C.G. Coe , G.P. Pez , A.C. Cooper : Tailoring singlewalled carbon nanotubes for hydrogen storage. J. Mater. Res. 20, 3214 (2005).

24.G. Seifert , T. Köhler , R. Tenne : Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497 (2002).

25.Y.Q. Zhu , T. Sekine , K.S. Brigatti , S. Firth , R. Tenne , R. Rosentsveig , H.W. Kroto , D.R.M. Walton : Shock-wave resistance of WS2 nanotubes. J. Am. Chem. Soc. 125, 1329 (2003).

27.L. Rapoport , N. Fleischer , R. Tenne : Fullerene-like WS2 nanoparticles: Superior lubricants for harsh conditions. Adv. Mater. 15, 651 (2003).

28.J. Chen , F. Wu : Review of hydrogen storage in inorganic fullerene-like nanotubes. Appl. Phys. A 78, 989 (2004).

29.X. Wang , J. Zhuang , J. Chen , K.B. Zhou , Y.D. Li : Thermally stable silicate nanotubes. Angew. Chem., Int. Ed. Engl. 43, 2017 (2004).

30.J. Chen , S.L. Li , Z.L. Tao , Y.T. Shen , C.X. Cui : Titanium disulfide nanotubes as hydrogen-storage materials. J. Am. Chem. Soc. 125, 5284 (2003).

32.J. Chen , N. Kuriyama , H.T. Yuan , H.T. Takeshita , T. Sakai : Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123, 11813 (2001).

33.X. Wu , J. Yang , J. Hou , Q. Zhu : Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes. J. Chem. Phys. 121, 8481 (2004).

34.X. Wu , J. Yang , J. Hou , Q. Zhu : Defects-enhanced dissociation of H2 on boron nitride nanotubes. J. Chem. Phys. 124, 054706 (2006).

35.S.H. Jhi , Y.K. Kwon : Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage. Phys. Rev. B 69, 245407 (2004).

36.S.S. Han , J.K. Kang , H.M. Lee , A.C.T. Duin , W.A. Goddard : Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. J. Chem. Phys. 123, 114704 (2005).

37.X. Chen , X.P. Gao , H. Zhang , Z. Zhou , W.K. Hu , G.L. Pan , H.Y. Zhu , T.Y. Yan , D.Y. Song : Preparation and electrochemical hydrogen storage of boron nitride nanotubes. J. Phys. Chem. B 109, 11525 (2005).

38.S.H. Lim , J. Luo , Z. Zhong , W. Ji , J. Lin : Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124 (2005).

39.D.V. Bavykin , A.A. Lapkin , P.K. Plucinski , J.M. Friedrich , F.C. Walsh : Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 109, 19422 (2005).

40.M.S. Whittingham : Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

42.M. Winter , J.O. Besenhard , M.E. Spahr , P. Novák : Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998).

43.H.K. Liu , G.X. Wang , Z.P. Guo , J.Z. Wang , K. Konstantinov : Nanomaterials for lithium-ion rechargeable batteries. J. Nanosci. Nanotechnol. 6, 1 (2006).

44.C.R. Sides , N. Li , C.J. Patrissi , B. Scrosati , C.R. Martin : Nanoscale materials for lithium-ion batteries. Mater. Res. Bull. 27, 604 (2002).

45.A. Zak , Y. Feldman , V. Lyakhovitskaya , G. Leitus , R. Popovitz-Biro , E. Wachtel , H. Cohen , S. Reich , R. Tenne : Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124, 4747 (2002).

46.J. Chen , Z.L. Tao , S.L. Li : Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem., Int. Ed. Engl. 42, 2147 (2003).

47.J. Chen , S.L. Li , Z.L. Tao , F. Gao : Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 980 (2003).

48.Z.L. Tao , L.N. Xu , X.L. Gou , J. Chen , H.T. Yuan : TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 2080 (2004).

49.R. Dominko , D. Arcon , A. Mrzel , A. Zorko , P. Cevc , P. Venturini , M. Caberscek , M. Remskar , D. Mihailovic : Dichalcogenide nanotubes electrodes for Li-ion batteries. Adv. Mater. 14, 1531 (2002).

50.G.X. Wang , S. Bewlay , J. Yao , H.K. Liu , S.X. Dou : Tungsten disulfide nanotubes for lithium storage. Electrochem. Solid-State Lett. 7, A321 (2004).

51.X.L. Li , Y.D. Li : MoS2 nanostructures: Synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 108, 13893 (2004).

52.H.A. Therese , F. Rocker , A. Reiber , J. Li , M. Stepputat , G. Glasser , U. Kolb , W. Tremel : VS2 nanotubes containing organic-amine templates from the NT-VO x precursors and reversible copper intercalation in NT-VS2. Angew. Chem., Int. Ed. Engl. 44, 262 (2005).

53.A.R. Armstrong , G. Armstrong , J. Canales , P.G. Bruce : TiO2–B nanowires. Angew. Chem., Int. Ed. Engl. 43, 2286 (2004).

54.G. Armstrong , A.R. Armstrong , J. Canales , P.G. Bruce : Nanotubes with the TiO2–B structure. Chem. Commun. 2454 (2005).

55.G. Armstrong , A.R. Armstrong , J. Canales , P.G. Bruce : TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett. 9, A139 (2006).

56.A.R. Armstrong , G. Armstrong , J. Canales , P.G. Bruce : TiO2–B nanowires as negative electrodes for rechargeable lithium batteries. J. Power Sources 146, 501 (2005).

57.M. Zukalová , M. Kalbác , L. Kavan , I. Exnar , M. Graetzel : Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).

58.J. Li , Z. Tang , Z. Zhang : H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 7, 62 (2005).

59.J. Li , Z. Tang , Z. Zhang : Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848 (2005).

60.J. Li , Z. Tang , Z. Zhang : Preparation and novel lithium intercalation properties of titanium oxide nanotubes. Electrochem. Solid-State Lett. 8, A316 (2005).

61.Y.K. Zhou , L. Cao , F.B. Zhang , B.L. He , H.L. Li : Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. 150, A1246 (2003).

62.X. Gao , H. Zhu , G. Pan , S. Ye , Y. Lan , F. Wu , D. Song : Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material. J. Phys. Chem. B 108, 2868 (2004).

63.M.E. Spahr , P. Bitterli , R. Nesper , M. Müller , E. Krumeich , H.U. Nissen : Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. Engl. 37, 1263 (1998).

64.M.E. Spahr , P. Bitterli , R. Nesper , O. Haas , P. Novák : Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).

65.C.J. Patrissi , C.R. Martin : Sol-gel-based template synthesis and Li-insertion rate performance of nanostructures vanadium pentoxide. J. Electrochem. Soc. 146, 3176 (1999).

66.A. Dobley , K. Ngala , S. Yang , P.Y. Zavalij , M.S. Whittingham : Manganese vanadium oxide nanotubes: Synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382 (2001).

67.A. Augustsson , T. Schmitt , L.C. Duda , J. Nordgren , S. Nordlinder , K. Edström , T. Gustafsson , J.H. Guo : The electronic structure and lithium of electrodes based on vanadium-oxide nanotubes. J. Appl. Phys. 94, 5083 (2003).

68.Y. Wang , K. Takahashi , H. Shang , G. Cao : Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 109, 3085 (2005).

69.K. Takahashi , Y. Wang , G. Cao : Ni–V2O5·nH2O core-shell nanocable arrays for enhanced electrochemical intercalation. J. Phys. Chem. B 109, 48 (2005).

70.S. Nordlinder , L. Nyholm , T. Gustafsson , K. Edström : Lithium insertion into vanadium oxide nanotubes: Electrochemical and structural aspects. Chem. Mater. 18, 495 (2006).

71.H. Li , X. Huang , L. Chen : Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 123, 189 (1999).

72.I.A. Courtney , J.R. Dahn : Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).

73.Z. Ying , Q. Wan , H. Cao , Z.T. Song , S.L. Feng : Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Appl. Phys. Lett. 87, 113108 (2005).

75.J. Chen , L.N. Xu , W.Y. Li , X.L. Gou : α–Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).

76.W.Y. Li , L.N. Xu , J. Chen : Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851 (2005).

77.W.Y. Li , F.Y. Cheng , Z.L. Tao , J. Chen : Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α–MoO3 microrods. J. Phys. Chem. B 110, 119 (2006).

78.F.Y. Cheng , J.Z. Zhao , W.E. Song , C.S. Li , H. Ma , J. Chen , P.W. Shen : Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 (2006).

79.M.S. Wu , P.C.J. Chiang , J.T. Lee , J.C. Lin : Synthesis of manganese oxide electrodes with interconnected nanowire structures as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 (2005).

80.M.S. Wu , P.C.J. Chiang : Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem. Commun. 8, 383 (2006).

81.X.P. Gao , J.L. Bao , G.L. Pan , H.Y. Zhu , P.X. Huang , F. Wu , D.Y. Song : Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547 (2004).

82.M. Sugantha , P.A. Ramakrishnan , A.M. Hermann , C.P. Warmsingh , D.S. Ginley : Nanostructured MnO2 for Li batteries. Int. J. Hydrogen Energy 28, 597 (2003).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: