Skip to main content

Structural and electrical properties of single Ga/ZnO nanofibers synthesized by electrospinning

  • Yuval Shmueli (a1), Gennady E. Shter (a1), Ossama Assad (a1), Hossam Haick (a1), Philippe Sonntag (a2), Philippe Ricoux (a3) and Gideon S. Grader (a4)...

Nanofibers (NFs) of Ga-doped ZnO (GZO) were prepared by electrospinning of polymer–salts solution. Sintering profiles reported in the literature led to loss of the fibrous structure. Hence, the morphology, thermal stability, and phase composition of green and sintered fibers were investigated as function of sintering conditions to elucidate this degradation process. Optimal results were obtained at 400 °C for 30 min. This low temperature sintering of GZO fibers has not been previously reported. The fibers were porous with a significant surface area, making it possible to test their sensitivity to environmental changes. In particular, the response of the GZO NFs to changes in humidity was demonstrated for the first time. The electrical and sensing properties of single NFs prepared at these conditions were studied using a field-effect transistor mode.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Özgür Ü., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.-J., and Morkoç H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1 (2005).
2.Klingshirn C.: ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007).
3.Izyumskaya N., Avrutin V., Özgür Ü., Alivov Y.I., and Morkoç H.: Preparation and properties of ZnO and devices. Phys. Status Solidi B 244, 1439 (2007).
4.Wang X., Summers C.J., and Wang Z.L.: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423 (2004).
5.Fan Z., Wang D., Chang P.-C., Tseng W.-Y., and Lu J.G.: ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923 (2004).
6.Pandey N.K. and Tiwari K.: Morphological and relative humidity sensing properties of pure ZnO nanomaterial. Sens. Transducers 122, 9 (2010).
7.Morales A.M. and Lieber C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).
8.Zhang Y.F., Tang Y.H., Wang N., Yu D.P., Lee C.S., Bello I., and Lee S.T.: Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72, 1835 (1998).
9.Cui Y., Lauhon L.J., Gudiksen M.S., Wang J., and Lieber C.M.: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).
10.Wang N., Tang Y.H., Zhang Y.F., Lee C.S., Bello I., and Lee S.T.: Si nanowires grown from silicon oxide. Chem. Phys. Lett. 299, 237 (1999).
11.Lee S.T., Zhang Y.F., Wang N., Tang Y.H., Bello I., Lee C.S., and Chung Y.W.: Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503 (1999).
12.Gole J.L., Stout J.D., Rauch W.L., and Wang Z.L.: Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl. Phys. Lett. 76, 2346 (2000).
13.Marsen B., Lonfat M., Scheier P., and Sattler K.: Energy gap of silicon clusters studied by scanning tunneling spectroscopy. Phys. Rev. B: Condens. Matter 62, 6892 (2000).
14.Holmes J.D., Johnston K.P., Doty R.C., and Korgel B.A.: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000).
15.Formhals A.: Process and apparatus for preparing artificial threads. U.S. Patent No. 1,975,504, 1934.
16.Li D. and Xia Y.: Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151 (2004).
17.Rutledge G.C. and Fridrikh S.V.: Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. 59, 1384 (2007).
18.Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., and Ma Z.: An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).
19.Yang D.-J., Chen F., Xiong Z.-C., Xiong C.-D., and Wang Y-Z.: Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomater. 5, 2467 (2009).
20.Liang D., Hsiao B.S., and Chu B.: Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59, 1392 (2007).
21.Qin X.-H. and Wang S.-Y.: Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. J. Appl. Polym. Sci. 109, 951 (2008).
22.Xu S., Sun D., Liu H., Wang X., and Yan X.: Fabrication of Cu-doped cerium oxide nanofibers via electrospinning for preferential CO oxidation. Catal. Commun. 12, 514 (2011).
23.Mukherjee K., Teng T.-H., Jose R., and Ramakrishna S.: Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells. Appl. Phys. Lett. 95, 012101 (2009).
24.Grader G.S., Shter G.E., Sonntag P., and Ricoux P.: Metal and composite carbon-metal nanofibers by electrospinning of a polymer/salt/nanopowder suspension. U.S. Patent No. 61,474,394, 2011.
25.Lim S.K., Hwang S.-H., Kim S., and Park H.: Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens. Actuators, B 160, 94 (2011).
26.Ryu H.-W., Park B.-S., Akbar S.A., Lee W.-S., Hong K.-J., Seo Y.-J., Shin D.-C., Park J.-S., and Choi G.-P.: ZnO sol-gel derived porous film for CO gas sensing. Sens. Actuators, B 96, 717 (2003).
27.Chen J., Yan X., Liu W., and Xue Q.: The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation. Sens. Actuators, B 160, 1499 (2011).
28.Xiangfeng C., Dongli J., Djurišic A.B., and Leung Y.H.: Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chem. Phys. Lett. 401, 426 (2005).
29.Rout C.S., Hari Krishna S., Vivekchand S.R.C., Govindaraj A., and Rao C.N.R.: Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem. Phys. Lett. 418, 586 (2006).
30.Chen M., Wang Z., Han D., Gu F., and Guo G.: High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators, B 157, 565 (2011).
31.Kishimoto Y., Nakagawara O., Seto H., Koshido Y., and Yoshino Y.: Improvement in moisture durability of ZnO transparent conductive films with Ga heavy doping process. Vacuum 83, 544 (2008).
32.Hong H.-S. and Chung G.-S.: Humidity sensing characteristics of Ga-doped zinc oxide film grown on a polycrystalline AlN thin film based on a surface acoustic wave. Sens. Actuators, B 150, 681 (2010).
33.Wang W., Li Z., Liu L., Zhang H., Zheng W., Wang Y., Huang H., Wang Z., and Wang C.: Humidity sensor based on LiCl-doped ZnO electrospun nanofibers. Sens. Actuators, B 141, 404 (2009).
34.Zhang H., Li Z., Wang W., Wang C., and Liu L.: Na+-doped zinc oxide nanofiber membrane for high speed humidity sensor. J. Am. Ceram. Soc. 93, 142 (2010).
35.Wu H. and Pan W.: Preparation of zinc oxide nanofibers by electrospinning. J. Am. Ceram. Soc. 89, 699 (2006).
36.Yang X., Shao C., Guan H., Li X., and Gong J.: Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg. Chem. Commun. 7, 176 (2004).
37.Lotus A.F., Kang Y.C., Walker J.I., Ramsier R.D., and Chase G.G.: Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning. Mater. Sci. Eng., B 166, 61 (2010).
38.Zhou B., Wu Y., Wu L., Zou K., and Gai H.: Effects of Al dopants on the microstructures and optical properties of ZnO nanofibers prepared by electrospinning. Physica E 41, 705 (2009).
39.Wang W., Huang H., Li Z., Zhang H., Wang Y., Zheng W., and Wang C.: Zinc oxide nanofiber gas sensors via electrospinning. J. Am. Ceram. Soc. 91, 3817 (2008).
40.Goldberger J., Sirbuly D.J., Law M., and Yang P.: ZnO nanowire transistors. J. Phys. Chem. B 109, 9 (2005).
41.Wu H., Lin D., Zhang R., and Pan W.: ZnO nanofiber field-effect transistor assembled by electrospinning. J. Am. Ceram. Soc. 91, 656 (2008).
42.Jiang T., Zhou X., Zhang J., Zhu J., Li X., and Li T.: Study of humidity properties of zinc oxide modified porous silicon. Proceedings of the 5th IEEE International Conference “Sensor 2006”, Daegu, Korea, October 22-25, 2006 (IEEE, New York, NY, 2006). pp. 1211–1214.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 4
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 122 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.