Skip to main content
×
Home
    • Aa
    • Aa

Structural and electrical properties of single Ga/ZnO nanofibers synthesized by electrospinning

  • Yuval Shmueli (a1), Gennady E. Shter (a1), Ossama Assad (a1), Hossam Haick (a1), Philippe Sonntag (a2), Philippe Ricoux (a3) and Gideon S. Grader (a4)...
Abstract
Abstract

Nanofibers (NFs) of Ga-doped ZnO (GZO) were prepared by electrospinning of polymer–salts solution. Sintering profiles reported in the literature led to loss of the fibrous structure. Hence, the morphology, thermal stability, and phase composition of green and sintered fibers were investigated as function of sintering conditions to elucidate this degradation process. Optimal results were obtained at 400 °C for 30 min. This low temperature sintering of GZO fibers has not been previously reported. The fibers were porous with a significant surface area, making it possible to test their sensitivity to environmental changes. In particular, the response of the GZO NFs to changes in humidity was demonstrated for the first time. The electrical and sensing properties of single NFs prepared at these conditions were studied using a field-effect transistor mode.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: grader@ce.technion.ac.il
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. Ü. Özgür , Y.I. Alivov , C. Liu , A. Teke , M.A. Reshchikov , S. Dogan , V. Avrutin , S.-J. Cho , and H. Morkoç : A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1 (2005).

2. C. Klingshirn : ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007).

3. N. Izyumskaya , V. Avrutin , Ü. Özgür , Y.I. Alivov , and H. Morkoç : Preparation and properties of ZnO and devices. Phys. Status Solidi B 244, 1439 (2007).

4. X. Wang , C.J. Summers , and Z.L. Wang : Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423 (2004).

5. Z. Fan , D. Wang , P.-C. Chang , W.-Y. Tseng , and J.G. Lu : ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923 (2004).

7. A.M. Morales and C.M. Lieber : A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

8. Y.F. Zhang , Y.H. Tang , N. Wang , D.P. Yu , C.S. Lee , I. Bello , and S.T. Lee : Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72, 1835 (1998).

9. Y. Cui , L.J. Lauhon , M.S. Gudiksen , J. Wang , and C.M. Lieber : Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).

10. N. Wang , Y.H. Tang , Y.F. Zhang , C.S. Lee , I. Bello , and S.T. Lee : Si nanowires grown from silicon oxide. Chem. Phys. Lett. 299, 237 (1999).

12. J.L. Gole , J.D. Stout , W.L. Rauch , and Z.L. Wang : Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl. Phys. Lett. 76, 2346 (2000).

13. B. Marsen , M. Lonfat , P. Scheier , and K. Sattler : Energy gap of silicon clusters studied by scanning tunneling spectroscopy. Phys. Rev. B: Condens. Matter 62, 6892 (2000).

14. J.D. Holmes , K.P. Johnston , R.C. Doty , and B.A. Korgel : Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000).

16. D. Li and Y. Xia : Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151 (2004).

17. G.C. Rutledge and S.V. Fridrikh : Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. 59, 1384 (2007).

18. S. Ramakrishna , K. Fujihara , W.-E. Teo , T.-C. Lim , and Z. Ma : An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005).

19. D.-J. Yang , F. Chen , Z.-C. Xiong , C.-D. Xiong , and Y-Z. Wang : Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomater. 5, 2467 (2009).

20. D. Liang , B.S. Hsiao , and B. Chu : Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59, 1392 (2007).

21. X.-H. Qin and S.-Y. Wang : Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. J. Appl. Polym. Sci. 109, 951 (2008).

22. S. Xu , D. Sun , H. Liu , X. Wang , and X. Yan : Fabrication of Cu-doped cerium oxide nanofibers via electrospinning for preferential CO oxidation. Catal. Commun. 12, 514 (2011).

23. K. Mukherjee , T.-H. Teng , R. Jose , and S. Ramakrishna : Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells. Appl. Phys. Lett. 95, 012101 (2009).

25. S.K. Lim , S.-H. Hwang , S. Kim , and H. Park : Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens. Actuators, B 160, 94 (2011).

26. H.-W. Ryu , B.-S. Park , S.A. Akbar , W.-S. Lee , K.-J. Hong , Y.-J. Seo , D.-C. Shin , J.-S. Park , and G.-P. Choi : ZnO sol-gel derived porous film for CO gas sensing. Sens. Actuators, B 96, 717 (2003).

27. J. Chen , X. Yan , W. Liu , and Q. Xue : The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation. Sens. Actuators, B 160, 1499 (2011).

28. C. Xiangfeng , J. Dongli , A.B. Djurišic , and Y.H. Leung : Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chem. Phys. Lett. 401, 426 (2005).

29. C.S. Rout , S. Hari Krishna , S.R.C. Vivekchand , A. Govindaraj , and C.N.R. Rao : Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem. Phys. Lett. 418, 586 (2006).

30. M. Chen , Z. Wang , D. Han , F. Gu , and G. Guo : High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators, B 157, 565 (2011).

31. Y. Kishimoto , O. Nakagawara , H. Seto , Y. Koshido , and Y. Yoshino : Improvement in moisture durability of ZnO transparent conductive films with Ga heavy doping process. Vacuum 83, 544 (2008).

32. H.-S. Hong and G.-S. Chung : Humidity sensing characteristics of Ga-doped zinc oxide film grown on a polycrystalline AlN thin film based on a surface acoustic wave. Sens. Actuators, B 150, 681 (2010).

33. W. Wang , Z. Li , L. Liu , H. Zhang , W. Zheng , Y. Wang , H. Huang , Z. Wang , and C. Wang : Humidity sensor based on LiCl-doped ZnO electrospun nanofibers. Sens. Actuators, B 141, 404 (2009).

34. H. Zhang , Z. Li , W. Wang , C. Wang , and L. Liu : Na+-doped zinc oxide nanofiber membrane for high speed humidity sensor. J. Am. Ceram. Soc. 93, 142 (2010).

35. H. Wu and W. Pan : Preparation of zinc oxide nanofibers by electrospinning. J. Am. Ceram. Soc. 89, 699 (2006).

36. X. Yang , C. Shao , H. Guan , X. Li , and J. Gong : Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg. Chem. Commun. 7, 176 (2004).

37. A.F. Lotus , Y.C. Kang , J.I. Walker , R.D. Ramsier , and G.G. Chase : Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning. Mater. Sci. Eng., B 166, 61 (2010).

38. B. Zhou , Y. Wu , L. Wu , K. Zou , and H. Gai : Effects of Al dopants on the microstructures and optical properties of ZnO nanofibers prepared by electrospinning. Physica E 41, 705 (2009).

39. W. Wang , H. Huang , Z. Li , H. Zhang , Y. Wang , W. Zheng , and C. Wang : Zinc oxide nanofiber gas sensors via electrospinning. J. Am. Ceram. Soc. 91, 3817 (2008).

40. J. Goldberger , D.J. Sirbuly , M. Law , and P. Yang : ZnO nanowire transistors. J. Phys. Chem. B 109, 9 (2005).

41. H. Wu , D. Lin , R. Zhang , and W. Pan : ZnO nanofiber field-effect transistor assembled by electrospinning. J. Am. Ceram. Soc. 91, 656 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2017. This data will be updated every 24 hours.