Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T16:06:23.969Z Has data issue: false hasContentIssue false

Synthesis and properties of p-type nitrogen-doped ZnO thin films by pulsed laser ablation of a Zn-rich Zn3N2 target

Published online by Cambridge University Press:  31 January 2011

A. Allenic
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
W. Guo
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
Y.B. Chen
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
G.Y. Zhao
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
X.Q. Pan*
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
Y. Che
Affiliation:
Functional Materials Group, IMRA America, Inc., Ann Arbor, Michigan 48105
Z.D. Hu
Affiliation:
Functional Materials Group, IMRA America, Inc., Ann Arbor, Michigan 48105
B. Liu
Affiliation:
Functional Materials Group, IMRA America, Inc., Ann Arbor, Michigan 48105
*
a)Address all correspondence to this author. e-mail: panx@umich.edu
Get access

Abstract

Epitaxial ZnO thin films doped uniformly with nitrogen at 1020 atoms/cm3 were fabricated by pulsed laser ablation of a Zn-rich Zn3N2 target. The films grown at 300 °C and annealed at 600 °C in O2 showed p-type conductivity. Two acceptor levels at 105 and 224 meV were determined by temperature-dependent Hall and photoluminescence measurements of the p-type samples. Transmission electron microscopy studies revealed that the p-type ZnO films consist of 10–20 nm columnar grains with a high density of defects and grain boundaries that may facilitate the annihilation of native donors and the activation of acceptors during postdeposition annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, S.B., Wei, S.H.Zunger, A.: A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J. Appl. Phys. 83, 3192 1998CrossRefGoogle Scholar
2Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H.Kawasaki, M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 2005CrossRefGoogle Scholar
3Walukiewicz, W.: Intrinsic limitations to the doping of wide-gap semiconductors. Physica B (Amsterdam). 302–303, 123 2001CrossRefGoogle Scholar
4Marfaing, Y.: Fundamental studies on compensation mechanisms in II-VI compounds. J. Cryst. Growth 161, 205 1996CrossRefGoogle Scholar
5Li, X., Keyes, B., Asher, S., Zhang, S.B., Wei, S.H., Coutts, T.J., Limpijumnong, S.Van de Walle, C.G.: Hydrogen passivation effect in nitrogen-doped ZnO thin films. Appl. Phys. Lett. 86, 122107 2005CrossRefGoogle Scholar
6Park, C.H., Zhang, S.B.Wei, S.H.: Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 66, 073202 2002CrossRefGoogle Scholar
7Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B.Cantwell, G.: Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81, 1830 2002CrossRefGoogle Scholar
8Lee, E.C., Kim, Y.S., Jin, Y.G.Chang, K.J.: Compensation mechanism for N acceptors in ZnO. Phys. Rev. B 64, 085120 2001CrossRefGoogle Scholar
9Matsui, H., Saeki, H., Kawai, T., Tabata, H.Mizobuchi, B.: N doping using N2O and NO sources: From the viewpoint of ZnO. J. Appl. Phys. 95, 5882 2004CrossRefGoogle Scholar
10Garces, N.Y., Wang, L., Giles, N.C., Halliburton, L.E., Cantwell, G.Eason, D.B.: Molecular nitrogen (N2) acceptors and isolated nitrogen (N) acceptors in ZnO crystals. J. Appl. Phys. 94, 519 2003CrossRefGoogle Scholar
11Sumiya, M., Fuke, S., Tsukazaki, A., Tamura, K., Ohtomo, A., Kawasaki, M.Koinuma, H.: Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition. J. Appl. Phys. 93, 2562 2003CrossRefGoogle Scholar
12Chrisey, D.B.Hubler, G.K.: Pulsed Laser Deposition of Thin Films John Wiley & Sons New York 1994Google Scholar
13Kukreja, L.M., Rohlfing, A., Misra, P., Hillenkamp, F.Dreisewerd, K.: Cluster formation in UV laser ablation plumes of ZnSe and ZnO studied by time-of-flight mass spectrometry. Appl. Phys. A 78, 641 2004CrossRefGoogle Scholar
14Perkins, C.L., Lee, S.H., Li, X., Asher, S.E.Coutts, T.J.: Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys. 97, 034907 2005CrossRefGoogle Scholar
15Li, B.S., Liu, Y.C., Zhi, Z.Z., Shen, D.Z., Lu, Y.M., Zhang, J.Y., Fan, X.W., Mu, R.X.Henderson, D.O.: Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films. J. Mater. Res. 18, 8 2003CrossRefGoogle Scholar
16Wang, C., Ji, Z., Liu, K., Xiang, Y.Ye, Z.: p-type ZnO thin films prepared by oxidation of Zn3N2 thin films deposited by DC magnetron sputtering. J. Cryst. Growth 259, 279 2003CrossRefGoogle Scholar
17Kaminska, E., Piotrowska, A., Kossut, J., Barcz, A., Butkute, R., Dobrowolski, W., Dynowska, E., Jakiela, R., Przezdziecka, E., Lukasiewicz, R., Aleszkiewicz, M., Wojnar, P.Kowalczyk, E.: Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn3N2. Solid State Commun. 135, 11 2005CrossRefGoogle Scholar
18Petritz, R.L.: Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508 1956CrossRefGoogle Scholar
19Look, D.C.: Electrical Characterization of GaAs Materials and Devices Wiley New York 1989 Chap. 1Google Scholar
20Meyer, B.K., Alves, H., Hoffman, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffman, A., Strassburg, M., Dworzak, M., Haboeck, U.Rodina, A.V.: Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status. Solidi B 241, 231 2004CrossRefGoogle Scholar
21Thonke, K., Gruber, T., Teofilov, N., Schönfelder, R., Waag, A.Sauer, R.: Donor-acceptor pair in ZnO substrate material. Physica B (Amsterdam) 308–310, 945 2001CrossRefGoogle Scholar
22Tamura, K., Makino, T., Tsukazaki, A., Sumiya, M., Fuke, S., Furumochi, T., Lippmaa, M., Chia, C.H., Segawa, Y., Koinuma, H.Kawasaki, M.: Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates. Solid State Commun. 127, 265 2003CrossRefGoogle Scholar
23Zeuner, A., Alves, H., Hofmann, D.M., Meyer, B.K., Hoffmann, A., Haboeck, U., Strassburg, M.Dworzak, M.: Nitrogen doping in bulk and epitaxial ZnO. Phys. Status Solidi B 234, R7 20023.0.CO;2-D>CrossRefGoogle Scholar
24Wang, L.Giles, N.C.: Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy. Appl. Phys. Lett. 84, 3049 2004CrossRefGoogle Scholar