Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T13:56:20.943Z Has data issue: false hasContentIssue false

Synthesis of gold nanocrystals in concurrently polymerizing organic–inorganic hybrid films

Published online by Cambridge University Press:  03 March 2011

Mauro Epifani*
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica ed i Microsistemi, CNR-IMM, sezione di Lecce, 73100 Lecce, Italy
Elvio Carlino
Affiliation:
Centro di Microscopia Elettronica - Laboratorio Nazionale INFM-TASC Area Scienze Park, 34012 Trieste, Italy
Davide Furlanetto
Affiliation:
Centro di Microscopia Elettronica - Laboratorio Nazionale INFM-TASC Area Scienze Park, 34012 Trieste, Italy
Cinzia Giannini
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, CNR-IC, sezione di Bari,70125 Bari, Italy
Patrizia Imperatori
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, CNR-ISM,sezione di Montelibretti, 00016 Monterotondo (Roma), Italy
*
a)Address all correspondence to this author.e-mail: mauro.epifani@imm.cnr.it
Get access

Abstract

Gold nanocrystals were formed and grown in simultaneously polymerizing hybrid organic–inorganic films. For the preparation of Au containing films, tetraethyl orthosilicate and methacryloxypropyltrimethoxysilane were separately hydrolyzed and the resulting sols were mixed, followed by the addition of a photoinitiator and a NaAuCl4 solution in methanol. The resulting solutions were spin-coated onto glass-substrates, and the so-formed films were irradiated with a solar simulator at powers ranging from 200 to 800 W. The irradiation resulted in simultaneous polymerization of the films and formation of gold nanoparticles. The irradiated films were characterized by x-ray diffraction measurements, ultraviolet–visible optical absorption spectroscopy and transmission electron microscopy studies. After irradiation at 800 W, the transmission electron microscopy experiments showed the presence of homogeneously distributed Au nanoparticles with a size distribution ranging from 2 to 12 nm. The interpretation of the results indicates that the Au particle growth depends on the matrix polymerization rate; enhancing the rate by increasing the irradiation power or the photoinitiator concentration results in smaller particle domains. This result is explained referring to influence of the polymerization rate on the diffusion of gold species through the host.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861 (1989).CrossRefGoogle Scholar
2.Schmid, G.: Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709 (1992).CrossRefGoogle Scholar
3.Shipway, A.N., Katz, E. and Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18 (2000).3.0.CO;2-L>CrossRefGoogle ScholarPubMed
4.Niemeyer, C.: Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. Engl. 40, 4128 (2001).3.0.CO;2-S>CrossRefGoogle ScholarPubMed
5.Kamat, P.V.: Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729 (2002).CrossRefGoogle Scholar
6.Daniel, M.C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
7.Watkins, J.J. and McCarthy, T.J.: Polymer/metal nanocomposite synthesis in supercritical CO2. Chem. Mater. 7, 1991 (1995).CrossRefGoogle Scholar
8.Mayer, A.B.R.: Formation of noble metal nanoparticles within a polymeric matrix: Nanoparticle features and overall morphologies. Mater. Sci. Eng. C 6, 155 (1998).CrossRefGoogle Scholar
9.Corbierre, M.K., Cameron, N.S., Sutton, M., Mochrie, S.G.J., Lurio, L.B., Rühm, A. and Lennox, R.B.: Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J. Am. Chem. Soc. 123, 10411 (2001).CrossRefGoogle ScholarPubMed
10.Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G. and Jensen, K.F.: Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
11.Zhang, H., Cui, Z., Wang, Y., Zhang, K., Ji, X., , C., Yang, B. and Gao, M.: From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 15, 777 (2003).CrossRefGoogle Scholar
12.Selvan, S.T., Spatz, J.P., Klok, K.A. and Möller, M.: Gold-polypyrrole core-shell particles in diblock copolymer micelles. Adv. Mater. 10, 132 (1998).3.0.CO;2-Y>CrossRefGoogle Scholar
13.Breimer, M.A., Yevgeny, G., Sy, S. and Sadik, O.A.: Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: A mechanistic insight. Nano Lett. 1, 305 (2001).CrossRefGoogle Scholar
14.Zhang, Z. and Han, M.: One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J. Mater. Chem. 13, 641 (2003).CrossRefGoogle Scholar
15.Wen, J. and Wilkes, J.W.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 1667 (1996).CrossRefGoogle Scholar
16.Cerveau, G., Corriu, R.J.P. and Framery, E.: Nanostructured organic-inorganic hybrid materials: Kinetic control of the texture. Chem. Mater. 13, 3373 (2001).CrossRefGoogle Scholar
17.Sanchez, C., Soler-Illia, G.J., De, A.A., Ribot, F., Lalot, T., Mayer, C.R. and Cabuil, V.: Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061 (2001).CrossRefGoogle Scholar
18.Sanchez, C., Lebeau, B., Chaput, F. and Boilot, J.P.: Optical properties of functional hybrid organic-inorganic nanocomposites. Adv. Mater. 15, 1969 (2003).CrossRefGoogle Scholar
19.Tseng, J.Y., Li, C.Y., Takada, T., Lechner, C. and Mackenzie, J.D.: Optical properties of metal cluster-doped ormosil nanocomposites. Sol-Gel Optics II SPIE 1758, 612 (1992).Google Scholar
20.Sakka, S., Kozuka, H. and Zhao, G.: Sol-Gel preparation of metal particle/oxide nanocomposites. Sol-Gel Optics SPIE III 2288, 108 (1994).Google Scholar
21.Innocenzi, P., Kozuka, H. and Sakka, S.: Preparation of coating films doped with gold metal particles from methyltriethoxysilane-tetraethoxysilane solutions. J. Sol-Gel. Sci. Technol. 1, 305 (1994).CrossRefGoogle Scholar
22.Mennig, M., Schmitt, M. and Schmitt, H.: Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass. J. Sol-Gel. Sci. Technol. 8, 1035 (1997).CrossRefGoogle Scholar
23.Kutsch, B., Schmitt, M., Mennig, M., Schmidt, H. and Lyon, O.: Investigations of the electronic structure of nanoscaled gold-colloids in sol-gel-coatings. J. Non-Cryst. Solids 217, 143 (1997).CrossRefGoogle Scholar
24.De, G. and Kundu, D.: Gold-nanocluster-doped inorganic-organic hybrid coatings on polycarbonate and isolation of shaped gold microcrystals from the coating sol. Chem. Mater. 13, 4239 (2001).CrossRefGoogle Scholar
25.Epifani, M., Carlino, E., Blasi, C., Giannini, C., Tapfer, L. and Vasanelli, L.: Sol-Gel processing of au nanoparticles in bulk 10% B2O3–90% SiO2 Glass. Chem. Mater. 13, 1533 (2001).CrossRefGoogle Scholar
26.Epifani, M., Leo, G., Lomascolo, M., Vasanelli, L. and Manna, L.: Sol-gel synthesis of hybrid organic-inorganic monoliths doped with colloidal CdSe/ZnS core-shell nanocrystals. J. Sol-Gel Sci. Technol. 26, 441 (2003).CrossRefGoogle Scholar
27.Toraya, H. and Yoshino, J.: Profiles in asymmetric diffraction with pseudo-parallel-beam geometry. J. Appl. Crystallogr. 27, 961 (1994).CrossRefGoogle Scholar
28.Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993).CrossRefGoogle Scholar
29.Balzar, David. National Institute of Standards and Technology. http://www.boulder.nist.gov/div853/balzar/breadth.htm.Google Scholar
30.Balzar, D. and Ledbetter, H.: Voigt-function modeling in Fourier analysis of size- and strain-broadened x-ray diffraction peaks. J. Appl. Crystallogr. 26, 97 (1993).CrossRefGoogle Scholar
31.Spence, J.C.H.: in Experimental High-Resolution Electron Microscopy, 2nd ed. (Oxford University Press, Oxford, U.K., 1988), p. 87.Google Scholar
32.Vollmer, M. and Kreibig, U.: Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Berlin, Germany, 1995).Google Scholar