Skip to main content Accessibility help
×
Home

Synthesis of pure amorphous Fe2O3

  • X. Cao (a1), R. Prozorov (a2), Yu. Koltypin (a1), G. Kataby (a1), I. Felner (a3) and A. Gedanken (a1)...

Abstract

A method for the preparation of pure amorphous Fe2O3 powder with particle size of 25 nm is reported in this article. Pure amorphous Fe2O3 can be simply synthesized by the sonication of neat Fe(CO)5 or its solution in decalin under an air atmosphere. The Fe2O3 nanoparticles are converted to crystalline Fe3O4 nanoparticles when heated to 420 °C under vacuum or when heated to the same temperature under a nitrogen atmosphere. The crystalline Fe3O4 nanoparticles were characterized by x-ray diffraction and M¨ossbauer spectroscopy. The Fe2O3 amorphous nanoparticles were examined by Transmission Electron Micrography (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 at room temperature is very low (<1.5 emu/g) and it crystallizes at 268 °C.

Copyright

References

Hide All
1.Livage, J., J. Phys., colloque C4, supplement au no. 10, Tome 42, 981 (1981).
2.Ferromagnetic Materials, edited by Wohlfarth, E. P. (North-Holland, Amsterdam, 1980), Vol. 2, p. 405.
3.Murawski, L., Chang, C. H., and Mackenzie, J. D., J. Non-Cryst. Solids 32, 91 (1979).
4.Curry-Hyde, H. E., Musch, H., and Baiker, A., Appl. Catal. 65, 211 (1990).
5.Cao, H. and Suib, S. L., J. Am. Chem. Soc. 116, 5334 (1994).
6.Sugimoto, M., J. Magn. Magn. Mater. 133, 460 (1994).
7.Tanaka, K., Hirao, K., and Soga, N., J. Appl. Phys. 69, 7752 (1991).
8.Sugimoto, M. and Hiratsuka, N., J. Magn. Magn. Mater. 31/34, 1533 (1983).
9.Steger, W. E., Landmesser, H., Boettcher, U., and Schubert, E., J. Mol. Struc. 217, 341 (1990).
10.Pashmakov, B., Claflin, B., and Fritzsche, H., Solid State Commun. 86, 619 (1993).
11.Kandory, K. and Ishikawa, T., Langmuir 7, 2213 (1991).
12.Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature (London) 353, 414 (1991).
13.Suslick, K. S., Fang, M., Heyon, T., and Cichowlas, A. A., in Molecularly Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994).
14. K. S. Suslick, T. Heyon, M. Fang, and A. A. Cichowlas, ibid.
15.Grinstaff, M. W., Salamon, M. B., and Suslick, K. S., Phys. Rev. B 48, 269 (1993).
16.Cao, X., Koltypin, Yu., Kataby, G., Prozorov, R., and Gedanken, A., J. Mater. Res. 10, 2996 (1995).
17.Koltypin, Yu., Cao, X., Kataby, G., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).
18.Feigel, F., Spot Tests, Inorganic Applications (Elsevier Publishing Co., New York, 1954), Vol. 1, pp. 154155.
19.Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry (Interscience Publishers, New York, 1962), p. 709.
20.Greenwood, N. N. and Gibb, T. C., Mössbauer Spectroscopy (Chapman and Hall Ltd., London, 1971), p. 251.
21.Elliott, S. R., Physics of Amorphous Materials (Longman, London and New York, 1984), pp. 350357.
22.Morup, S., Europhys. Lett. 28, 671 (1994); S. Morup and E. Trone, Phys. Rev. Lett. 72, 3278 (1994).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed