Skip to main content
    • Aa
    • Aa

Teflon AF/Ag nanocomposites with tailored optical properties

  • H. Eilers (a1), A. Biswas (a1), T.D. Pounds (a2), M. Grant Norton (a2) and M. Elbahri (a3)...

Teflon AF/Ag nanocomposites with various metal concentrations were fabricated by an evaporation process. Transmission electron microscopy examination showed that for low metal concentrations, the silver formed isolated individual nanoparticles. At higher metal concentrations, percolating metallic networks within the polymer matrix were formed. Optical absorption measurements showed a transition from individual plasmon absorption peaks for individual Ag nanoparticles to broadband optical absorption for the metallic networks. The absorption profile closely matches the solar radiation spectrum for an intermediate metal concentration of 45%. Thus, these novel polymer-metal nanocomposites have significant potential for photovoltaic applications.

Corresponding author
a) Address all correspondence to these authors. e-mail:
Hide All
1Metal-Polymer Nanocomposites, edited by Nicolais L. and Carotenuto G. (Wiley Interscience, Hoboken, NJ, 2005).
2Heilmann A.: Polymer Films with Embedded Metal Nanoparticles, Springer Series in Materials Science, Vol. 52 (Springer-Verlag, Berlin, Heidelberg, New York, 2003).
3Kreibig U. and Vollmer M.: Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25 (Springer-Verlag, Berlin, Heidelberg, New York, 1995).
4Shalaev V.M.: Optical nonlinearities of fractal composites, in Optical Properties of Nanostructured Random Media, Topics in Applied Physics, Vol. 82, edited by Shalaev V.M. (Springer-Verlag, Berlin, Heidelberg, Germany, 2002), pp. 93114.
5Schürmann U., Hartung W.A., Takele H., Zaporojtchenko V., and Faupel F.: Controlled syntheses of Ag-PTFE nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16, 1078 (2005).
6Takele H., Schürmann U., Greve H., Paretkar D., Zaporojtchenko V., and Faupel F.: Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties, Eur. Phys. J. Appl. Phys. 33, 83 (2006).
7Halas N.: Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362 (2005).
8Biswas A., Aktas O.C., Schürmann U., Saeed U., Zaporojtchenko V., Faupel F., and Strunskus T.: Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 84, 2655 (2004).
9Biswas A., Aktas O.C., Kanzow J., Saeed U., Strunskus T., Zaporojtchenko V., and Faupel F.: Polymer–metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58, 1530 (2004).
10Dirix Y., Bastiaansen C., Caseri W., and Smith P.: Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).
11Quinten M.: The color of finely dispersed nanoparticles. Appl. Phys. B: Lasers Opt. 73, 317 (2001).
12Stegeman G.I. and Wright E.M.: All-optical waveguide switching. Opt. Quantum Electron. 22, 95 (1990).
13Bockstaller M., Kolb R., and Thomas E.L.: Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783 (2001).
14Bockstaller M.R. and Thomas E.L.: Optical properties of polymer-based photonic nanocomposite materials. J. Phys. Chem. B 107, 10017 (2003).
15Ward A.J., Pendry J.B., and Steward W.J.: Photonic dispersion surfaces. J. Phys.: Condens. Matter 7, 2217 (1995).
16Convertino A., Capobianchi A., Valentini A., and Cirillo E.N.M.: A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material. Adv. Mater. 15, 1103 (2003).
17Biswas A., Eilers H., Hidden F., Actas O.C., and Kiran C.V.S.: Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF matrix. Appl. Phys. Lett. 88, 013103 (2006).
18Westphalen M., Kreibig U., Rostalski J., Lüth H., and Meissner D.: Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells 61, 97 (2000).
19Rand B.P., Peumans P., and Forrest S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519 (2004).
20Granqvist C.G.: Solar energy materials. Adv. Mater. 15, 1789 (2003).
21Wu J., Walukiewicz W., Yu K.M., Shan W., III J.W. Ager, Haller E.E., Lu H., Schaff W.J., Metzger W.K., and Kurtz S.: Superior radiation resistance of In1−x Gax N alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477 (2003).
22Genov D.A., Sarychev A.K., and Shalaev V.M.: Metal-dielectric composite filters with controlled spectral windows of transparency. J. Nonlin. Opt. Phys. Mater. 12, 419 (2003).
23Kiesow A., Morris J.E., Radehaus C., and Heilmann A.: Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94, 6988 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 59 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.