Skip to main content

Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide

  • Laura Jamison (a1), Kumar Sridharan (a2), Steve Shannon (a3) and Izabela Szlufarska (a4)

The grain size dependence of the radiation response of silicon carbide (SiC) has been studied under 1.0 MeV Kr2+ ion irradiation. It was found that radiation resistance decreased with grain refinement, in contrast to previous studies on the same nanocrystalline (nc) SiC material using Si ion and high voltage electron irradiation. The effect of grain size on radiation response may depend upon the ion species used due to a potential change in amorphization mechanism. It was also determined that temperature had a strong effect on the grain size dependence of the radiation response in SiC due to the activation temperatures of critical recombination and migration reactions. This work explores the possible impacts of irradiation species, temperature, and experimental design on the radiation response of SiC.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Katoh Y., Snead L.L., Szlufarska I., and Weber W.J.: Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 16(3), 143 (2012).
2. Ford L.H., Hibbert N.S., and Martin D.G.: Recent developments of coatings for GCFR and HTGCR fuel particles and their performance. J. Nucl. Mater. 45(2), 139 (1972).
3. Zinkle S.J. and Busby J.T.: Structural materials for fission & fusion energy. Mater. Today 12(11), 12 (2009).
4. Verrall R.A., Vlajic M.D., and Krstic V.D.: Silicon carbide as an inert-matrix for a thermal reactor fuel. J. Nucl. Mater. 274(1–2), 54 (1999).
5. Rose M., Balogh A.G., and Hahn H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127128, 119 (1997).
6. Nita N., Schaeublin R., and Victoria M.: Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 329333, Part B, 953 (2004).
7. Radiguet B., Etienne A., Pareige P., Sauvage X., and Valiev R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43(23–24), 7338 (2008).
8. Kilmametov A.R., Gunderov D.V., Valiev R.Z., Balogh A.G., and Hahn H.: Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scr. Mater. 59(10), 1027 (2008).
9. Birtcher R.C. and Wang L.M.: Microstructural changes induced in Zr3Al and U3Si during irradiation of the crystalline state. Nucl. Instrum. Methods Phys. Res., Sect. B 5960, Part 2, 966 (1991).
10. Shen T.D., Feng S., Tang M., Valdez J.A., Wang Y., and Sickafus K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4 . Appl. Phys. Lett. 90(26), 263115 (2007).
11. Zhang Y., Ishimaru M., Varga T., Oda T., Hardiman C., Xue H., Katoh Y., Shannon S., and Weber W.J.: Nanoscale engineering of radiation tolerant silicon carbide. Phys. Chem. Chem. Phys. 14, 13429 (2012).
12. Jamison L., Zheng M-J., Shannon S., Allen T., Morgan D., and Szlufarska I.: Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation. J. Nucl. Mater. 445(1–3), 181 (2014).
13. Jiang W., Wang H., Kim I., Zhang Y., and Weber W.J.: Amorphization of nanocrystalline 3C–SiC irradiated with Si+ ions. J. Mater. Res. 25(12), 2341 (2010).
14. Jamison L., Xu P., Sridharan K., and Allen T.: Radiation resistance of nanocrystalline silicon carbide. In Advances in Materials Science for Environmental and Nuclear Technology II - Materials Science and Technology 2010 Conference and Exhibition, MS and T'10, Vol. 227, American Ceramic Society, 2011; pp. 161.
15. Jiang W., Wang H., Kim I., Bae I.T., Li G., Nachimuthu P., Zhu Z., Zhang Y., and Weber W.J.: Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80(16), 161301 (2009).
16. Jiang W., Jiao L., and Wang H.: Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide. J. Am. Ceram. Soc. 94(12), 4127 (2011).
17. Jiang C., Swaminathan N., Morgan D., and Szlufarska I.: Effect of grain boundary stresses on sink strength. Mater. Res. Lett. 2(2), 100 (2014).
18. Ishimaru M., Zhang Y., Shannon S., and Weber W.J.: Origin of radiation tolerance in 3C–SiC with nanolayered planar defects. Appl. Phys. Lett. 103, 033104 (2013).
19. Swaminathan N., Kamenski P.J., Morgan D., and Szlufarska I.: Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Mater. 58(8), 2843 (2010).
20. Petti D.A., Buongiorno J., Maki J.T., Hobbins R.R., and Miller G.K.: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222(2–3), 281 (2003).
21. Snead L.L., Nozawa T., Katoh Y., Byun T-S., Kondo S., and Petti D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329 (2007).
22. Inui H., Mori H., and Fujita H.: Electron-irradiation-induced crystalline to amorphous transition in alpha-SiC single crystals. Philos. Mag. B 61(1), 107 (1990).
23. Inui H., Mori H., Suzuki A., and Fujita H.: Electron-irradiation-induced crystalline-to-amorphous transition in beta-SiC single crystals. Philos. Mag. B 65(1), 1 (1992).
24. Weber W.J., Gao F., Devanathan R., Jiang W., and Wang C.M.: Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 25 (2004).
25. Devanathan R. and Weber W.J.: Displacement energy surface in 3C and 6H SiC. J. Nucl. Mater. 278(2–3), 258 (2000).
26. Weber W.J.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 98 (2000).
27. Bolse W.: Formation and development of disordered networks in Si-based ceramics under ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 133 (1998).
28. Weber W.J., Wang L.M., and Yu N.: The irradiation-induced crystalline-to-amorphous phase transition in α-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 116(1–4), 322 (1996).
29. Wang X., Jamison L., Shannon S., Sridharan K., Morgan D., and Szlufarska I.: (2014, in preparation).
30. Wendler E., Heft A., and Wesch W.: Ion-beam induced damage and annealing behaviour in SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 105 (1998).
31. Swaminathan N., Morgan D., and Szlufarska I.: Role of recombination kinetics and grain size in radiation-induced amorphization. Phys. Rev. B 86(21), 214110 (2012).
32. Kachurin G.A., Ruault M.O., Gutakovsky A.K., Kaı̈tasov O., Yanovskaya S.G., Zhuravlev K.S., and Bernas H.: Light particle irradiation effects in Si nanocrystals. Nucl. Instrum. Methods Phys. Res., Sect. B 147(1–4), 356 (1999).
33. Johannessen B., Kluth P., Llewellyn D.J., Foran G.J., Cookson D.J., and Ridgway M.C.: Amorphization of embedded Cu nanocrystals by ion irradiation. Appl. Phys. Lett. 90(7), 073119 (2007).
34. Was G.S.: Fundamentals of Radiation Materials Science (Springer, Berlin Heidelberg, Germany, 2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

Jamison et al. supplementary material
Supplementary figure

 Word (101 KB)
101 KB


Full text views

Total number of HTML views: 1
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 136 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.