Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 25
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Dmitriev, P A Makarov, S V Milichko, V A Mukhin, I S Samusev, A K Krasnok, A E and Belov, P A 2016. Direct Femtosecond Laser Writing of Optical Nanoresonators. Journal of Physics: Conference Series, Vol. 690, p. 012021.

    Makarov, Sergey V. Milichko, Valentin A. Mukhin, Ivan S. Shishkin, Ivan I. Zuev, Dmitry A. Mozharov, Alexey M. Krasnok, Alexander E. and Belov, Pavel A. 2016. Controllable femtosecond laser-induced dewetting for plasmonic applications. Laser & Photonics Reviews, Vol. 10, Issue. 1, p. 91.

    Namsani, Sadanandam and Singh, Jayant K. 2016. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation. Faraday Discuss., Vol. 186, p. 153.

    Nikov, Ru.G. Nedyalkov, N.N. Atanasov, P.A. Hirsch, D. Rauschenbach, B. Grochowska, K. and Sliwinski, G. 2016. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films. Applied Surface Science, Vol. 374, p. 36.

    Qi, Dongfeng Paeng, Dongwoo Yeo, Junyeob Kim, Eunpa Wang, Letian Chen, Songyan and Grigoropoulos, Costas P. 2016. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation. Applied Physics Letters, Vol. 108, Issue. 21, p. 211602.

    Hennes, M. Buchwald, J. Ross, U. Lotnyk, A. and Mayr, S. G. 2015. Equilibrium segregation patterns and alloying in Cu/Ni nanoparticles: Experiments versus modeling. Physical Review B, Vol. 91, Issue. 24,

    Makarov, Sergey V. Milichko, Valentin A. Krasnok, Alexander E. Belov, Pavel A. Mojarov, Alexey M. and Mukhin, Ivan S. 2015. 2015 Days on Diffraction (DD). p. 1.

    McKeown, Joseph T. Wu, Yueying Fowlkes, Jason D. Rack, Philip D. and Campbell, Geoffrey H. 2015. Simultaneous In-Situ Synthesis and Characterization of Co@Cu Core-Shell Nanoparticle Arrays. Advanced Materials, Vol. 27, Issue. 6, p. 1060.

    Nedyalkov, N. Nikov, Ru. Koleva, M. Atanasov, P.A. Constantinescu, C. Delaporte, Ph. and Grojo, D. 2015. Nanoparticle-decorated ceramic as substrate in surface enhanced Raman spectroscopy. Applied Surface Science, Vol. 336, p. 16.

    Reinhardt, Hendrik Bücker, Kerstin Yang, Fang Nürnberger, Philipp and Hampp, Norbert A. 2015. Highly Dynamic Alloying and Dealloying in the Model System Gold–Silicon (AuSi). The Journal of Physical Chemistry C, Vol. 119, Issue. 10, p. 5462.

    Campbell, Geoffrey H. McKeown, Joseph T. and Santala, Melissa K. 2014. Time resolved electron microscopy for in situ experiments. Applied Physics Reviews, Vol. 1, Issue. 4, p. 041101.

    Herz, A. Wang, D. Kups, Th. and Schaaf, P. 2014. Solid-state dewetting of Au/Ni bilayers: The effect of alloying on morphology evolution. Journal of Applied Physics, Vol. 116, Issue. 4, p. 044307.

    Herz, Andreas Wang, Dong and Schaaf, Peter 2014. Dewetting of Au/Ni bilayer films on prepatterned substrates and the formation of arrays of supersaturated Au-Ni nanoparticles. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 32, Issue. 2, p. 021802.

    Nikov, Ru G Nedyalkov, N N Stankova, N E and Atanasov, P A 2014. Fabrication of 2D arrays of multi-component nanoparticles. Journal of Physics: Conference Series, Vol. 514, p. 012025.

    Wu, Yueying Dong, Nanyi Fu, Shaofang Fowlkes, Jason D. Kondic, Lou Vincenti, Maria A. de Ceglia, Domenico and Rack, Philip D. 2014. Directed Liquid Phase Assembly of Highly Ordered Metallic Nanoparticle Arrays. ACS Applied Materials & Interfaces, Vol. 6, Issue. 8, p. 5835.

    Bernardi, Alessandro Ciabatti, Iacopo Femoni, Cristina Iapalucci, Maria Carmela Longoni, Giuliano and Zacchini, Stefano 2013. Ni–Cu tetracarbide carbonyls with vacant Ni(CO) fragments as borderline compounds between molecular and quasi-molecular clusters. Dalton Trans., Vol. 42, Issue. 2, p. 407.

    Herz, Andreas Wang, Dong Müller, Robert and Schaaf, Peter 2013. Formation of supersaturated Au–Ni nanoparticles via dewetting of an Au/Ni bilayer. Materials Letters, Vol. 102-103, p. 22.

    Oh, Yong-Jun Kim, Jung-Hwan Thompson, Carl V. and Ross, Caroline A. 2013. Templated assembly of Co–Pt nanoparticlesvia thermal and laser-induced dewetting of bilayer metal films. Nanoscale, Vol. 5, Issue. 1, p. 401.

    Fowlkes, Jason D. Kondic, Lou Diez, Javier A. González, Alejandro G. Wu, Yueying Roberts, Nick A. McCold, Cliff E. and Rack, Philip D. 2012. Parallel assembly of particles and wires on substrates by dictating instability evolution in liquid metal films. Nanoscale, Vol. 4, Issue. 23, p. 7376.

    Gentili, Denis Foschi, Giulia Valle, Francesco Cavallini, Massimiliano and Biscarini, Fabio 2012. Applications of dewetting in micro and nanotechnology. Chemical Society Reviews, Vol. 41, Issue. 12, p. 4430.


The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: The effect of nanoparticle size and composition on the plasmon response

  • Y. Wu (a1), J.D. Fowlkes (a2) and P.D. Rack (a3)
  • DOI:
  • Published online: 01 January 2011

Thin film Cu-Ni alloys ranging from 2–8 nm were synthesized and their optical properties were measured as-deposited and after a laser treatment which dewet the films into arrays of spatially correlated nanoparticles. The resultant nanoparticle size and spacing are attributed to a laser induced spinodal dewetting process. The evolution of the spinodal dewetting process is investigated as a function of the thin film composition which ultimately dictates the size distribution and spacing of the nanoparticles. The optical measurements of the copper rich alloy nanoparticles reveal a signature absorption peak suggestive of a plasmon peak that red-shifts with increasing nanoparticle size and blue-shifts and dampens with increasing nickel concentration.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.J. Becker , G. Grun , R. Seemann , H. Mantz , K. Jacobs , K.R. Mecke , and R. Blosseya : Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).

2.J. Bischof , D. Scherer , S. Herminghaus , and P. Leiderer : Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 8 (1996).

3.S.J. Henley , J.D. Carey , and S.R.P. Silva : Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).

4.J. Trice , D. Thomas , C. Favazza , R. Sureshkumar , and R. Kalyanaraman : Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).

5.J. Trice , C. Favazza , D. Thomas , H. Garcia , R. Kalyanaraman , and R. Sureshkumar : Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, (2008) 017802.

6.C. Favazza , R. Kalyanaraman , and R. Sureshkumar : Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17, 4229 (2006).

7.H. Krishna , N. Shirato , C. Favazza , and R. Kalyanaraman : Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).

8.H. Krishna , R. Sachan , J. Strader , C. Favazza , M. Khenner , and R. Kalyanaraman : Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).

9.M. Gedvilas , G. Raciukaitis , and K. Regelskis : Self-organization in a chromium thin film under laser irradiation. Appl. Phys. A 93, 203 (2008).

10.K. Yasuhiko and K. Takahisa : Nanoparticle formation in Au thin films by electron-beam-induced dewetting. Nanotechnology 19, 255605 (2008).

11.P.D. Rack , Y.F. Guan , J.D. Fowlkes , A.V. Melechko , and M.L. Simpson : Pulsed laser dewetting of patterned thin metal films: A means of directed assembly. Appl. Phys. Lett. 92, 223108 (2008).

12.J.D. Fowlkes , Y. Wu , and P.D. Rack : Directed assembly of bimetallic nanoparticles by pulsed-laser-induced dewetting: A unique nanoscale time and length scale regime. ACS Appl. Mater. Interfaces 2, 7 (2010).

13.L. Kondic , J. Diez , P.D. Rack , Y. Guan , and J.D. Fowlkes : Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 79, 026302 (2009).

14.Y. Wu , J.D. Fowlkes , P.D. Rack , L. Kondic , and J. Diez : On the breakup of patterned nanoscale copper rings into nanoparticles: Competing instability and transport mechanisms. Langmuir 26(14), 11972 (2010).

15.C. Lin , L. Jiang , J. Zhou , H. Xiao , S. Chen , and H. Tsai : Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering. Opt. Lett. 35, 7 (2010).

16.H. Krishna , C. Favazza , A.K. Gangopadhyay , and R. Kalyanaraman : Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 9 (2008).

17.K.L. Klein , A.V. Melechko , P.D. Rack , J.D. Fowlkes , H.M. Meyer , and M.L. Simpson : Cu-Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon 43, 1857, (2005).

18.J.D. Fowlkes , J.M. Fitz-Gerald , and P.D. Rack : Ultraviolet emitting (Y1– xGd x)2O3–δ thin films deposited by radio frequency magnetron sputtering: Combinatorial modeling, synthesis, and rapid characterization. Thin Solid Films 510, 68 (2006).

19.C. Favazza , R. Kalyanaraman , and R. Sureshkumar : Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).

20.C. Favazza , J. Trice , H. Krishna , and R. Kalyanaraman : Effect of surface roughness on laser-driven instability dewetting of ultrathin Co films. Proc. SPIE 7039, 703907 (2008).

21.R. Seemann , S. Herminghaus , and K. Jacobs : Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).

22.A.G. González , J. Diez , R. Gratton , and J. Gomba : Rupture of a fluid strip under partial wetting conditions. Europhys. Lett. 77, 44001 (2007).

23.M.S. McCallum , P.W. Voorhees , M.J. Miksis , S.H. Davis , and H. Wong : Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 79, 7604 (1996).

24.H. Amekura , Y. Takeda , and N. Kishimoto : Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 222, 96 (2004).

25.A. Picciotto , G. Pucker , L. Torrisi , P. Bellutti , F. Caridi , and A. Bagolini : Evidence of plasmon resonances of nickel particles deposited by pulsed laser ablation. Radiat. Eff. Defects Solids 163, 513 (2008).

26.G.H. Chan , J. Zhao , E.M. Hicks , G.C. Schatz , and R.P. Van Duyne : Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 7 (2007).

27.Y.L. Liu , Y.C. Liu , R. Mu , H. Yang , C.L. Shao , J.Y. Zhang , Y.M. Lu , D.Z. Shen , and X.W. Fan : The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol. 20, 44 (2005).

28.T. Ghodselahi , M.A. Vesaghi , and A. Shafiekhani : Study of surface plasmon resonance of Cu and Cu2O core-shell nanoparticles by Mie theory. J. Phys. D: Appl. Phys. 42, 015308 (2009).

29.M. Yang and J.J. Zhu : Spherical hollow assembly composed of Cu2O nanoparticles. J. Cryst. Growth 256, 134 (2003).

30.J. Zhang , H. Liu , Z.A. Wang , and N. Ming : Preparation and optical properties of silica and Ag-Cu alloy core-shell composite colloids. J. Solid State Chem. 180, 1291 (2007).

31.R.H. Magruder III, and J.E. Wittig : Wavelength tenability of the surface plasmon resonance of nanosize metal colloids in glass. J. Non-Cryst. Solids 163, 162 (1993).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *