Skip to main content Accessibility help

Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

  • Ramez Cheaito (a1), Caroline S. Gorham (a1), Amit Misra (a2), Khalid Hattar (a3) and Patrick E. Hopkins (a4)...


The progressive build up of fission products inside different nuclear reactor components can lead to significant damage of the constituent materials. We demonstrate the use of time-domain thermoreflectance (TDTR), a nondestructive thermal measurement technique, to study the effects of radiation damage on material properties. We use TDTR to report on the thermal conductivity of optimized ZIRLO, a material used as fuel cladding in nuclear reactors. We find that the thermal conductivity of optimized ZIRLO is 10.7 ± 1.8 W m−1 K−1 at room temperature. Furthermore, we find that the thermal conductivities of copper–niobium nanostructured multilayers do not change with helium ion irradiation doses of 1015 cm−2 and ion energy of 200 keV, demonstrating the potential of heterogeneous multilayer materials for radiation tolerant coatings. Finally, we compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Our results demonstrate that TDTR can be used to quantify depth dependent damage.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All

Current Address: Carnegie Mellon University, Mechanical Engineering, Pittsburgh, PA 15213, USA

Contributing Editor: Joel Ribis


This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1. Matzke, H.J.: Radiation damage in nuclear materials. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 3039 (1992).
2. Yvon, P. and Carr, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217222 (2009). Nuclear Materials III Proceedings of the E-MRS 2008 Spring Meeting: Third Symposium N on Nuclear Materials.
3. Was, G.S.: Fundamentals of Radiation Materials Science (Springer, Germany, 2007).
4. David, L., Goms, S., Carlot, G., Roger, J-P., Fournier, D., Valot, C., and Raynaud, M.: Characterization of thermal conductivity degradation induced by heavy ion irradiation in ceramic materials. J. Phys. D: Appl. Phys. 41, 035502 (2008).
5. Suud, Z. and Anshari, R.: Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident. AIP Conf. Proc. 1448, 315327 (2012).
6. NRC Information Notice 2009-23, Supplement 1: Nuclear Fuel Thermal Conductivity Degradation, Oct 26, 2012.
7. Gofryk, K., Du, S., Stanek, C.R., Lashley, J.C., Liu, X-Y., Schulze, R.K., Smith, J.L., Safarik, D.J., Byler, D.D., McClellan, K.J., Uberuaga, B.P., Scott, B.L., and Andersson, D.A.: Anisotropic thermal conductivity in uranium dioxide. Nat. Commun. 5, 4551 (2014).
8. Tanabe, T.: Radiation damage of graphite—Degradation of material parameters and defect structures. Phys. Scr. 1996, 7 (1996).
9. Snead, L.L., Zinkle, S.J., and White, D.P.: Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. J. Nucl. Mater. 340, 187202 (2005).
10. Snead, L.L.: Accumulation of thermal resistance in neutron irradiated graphite materials. J. Nucl. Mater. 381, 7682 (2008). Proceedings of the Seventh and Eighth International Graphite Specialists Meetings (INGSM).
11. Crocombette, J-P. and Proville, L.: Thermal conductivity degradation induced by point defects in irradiated silicon carbide. Appl. Phys. Lett. 98, 191905 (2011).
12. Weisensee, P.B., Feser, J.P., and Cahill, D.G.: Effect of ion irradiation on the thermal conductivity of UO2 and U3O8 epitaxial layers. J. Nucl. Mater. 443, 212217 (2013).
13. Men, D., Patel, M.K., Usov, I.O., Toiammou, M., Monnet, I., Pivin, J.C., Porter, J.R., and Mecartney, M.L.: Radiation damage in multiphase ceramics. J. Nucl. Mater. 443, 120127 (2013).
14. Nguyen, B.N., Gao, F., Henager, C.H. Jr., and Kurtz, R.J.: Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data. J. Nucl. Mater. 448, 364372 (2014).
15. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L.: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448476 (2014).
16. Ben-Belgacem, M., Richet, V., Terrani, K.A., Katoh, Y., and Snead, L.L.: Thermo-mechanical analysis of LWR SiC/SiC composite cladding. J. Nucl. Mater. 447, 125142 (2014).
17. Cabrero, J., Audubert, F., Pailler, R., Kusiak, A., Battaglia, J., and Weisbecker, P.: Thermal conductivity of SiC after heavy ions irradiation. J. Nucl. Mater. 396, 202207 (2010).
18. Horne, K., Ban, H., Mandelis, A., and Matvienko, A.: Photothermal radiometry measurement of thermophysical property change of an ion-irradiated sample. Mater. Sci. Eng., B 177, 164167 (2012).
19. Jensen, C., Chirtoc, M., Horny, N., Antoniow, J.S., Pron, H., and Ban, H.: Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods. J. Appl. Phys. 114, 133509 (2013).
20. Khafizov, M., Yablinsky, C., Allen, T.R., and Hurley, D.H.: Measurement of thermal conductivity in proton irradiated silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 325, 1114 (2014).
21. Pakarinen, J., Khafizov, M., He, L., Wetteland, C., Gan, J., Nelson, A.T., Hurley, D.H., El-Azab, A., and Allen, T.R.: Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation. J. Nucl. Mater. 454, 283289 (2014).
22. Paddock, C.A. and Eesley, G.L.: Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285290 (1986).
23. Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004).
24. Schmidt, A.J., Chen, X., and Chen, G.: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).
25. Hopkins, P.E.: Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 682586 (2013).
26. Oh, D-W., Ravichandran, J., Liang, C-W., Siemons, W., Jalan, B., Brooks, C.M., Huijben, M., Schlom, D.G., Stemmer, S., Martin, L.W., Majumdar, A., Ramesh, R., and Cahill, D.G.: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).
27. Tong, T., Fu, D., Levander, A.X., Schaff, W.J., Pantha, B.N., Lu, N., Liu, B., Ferguson, I., Zhang, R., Lin, J.Y., Jiang, H.X., Wu, J., and Cahill, D.G.: Suppression of thermal conductivity in InxGa1-xN alloys by nanometer-scale disorder. Appl. Phys. Lett. 102, 121906 (2013).
28. Gorham, C.S., Hattar, K., Cheaito, R., Duda, J.C., Gaskins, J.T., Beechem, T.E., Ihlefeld, J.F., Biedermann, L.B., Piekos, E.S., Medlin, D.L., and Hopkins, P.E.: Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys. Rev. B 90, 024301 (2014).
29. Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E., and Humphreys, C.J.: Electron-beam-induced strain within InGaN quantum wells: False indium cluster detection in the transmission electron microscope. Appl. Phys. Lett. 83, 54195421 (2003).
30. Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399409 (2004). International Wuhan Symposium on Advanced Electron Microscopy.
31. Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 18181823 (2010). 19th International Conference on Ion Beam Analysis.
32. Hopkins, P.E., Serrano, J.R., Phinney, L.M., Kearney, S.P., Grasser, T.W., and Harris, C.T.: Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J. Heat Transfer 132, 081302 (2010).
33. Wang, Y., Park, J.Y., Koh, Y.K., and Cahill, D.G.: Thermoreflectance of metal transducers for time-domain thermoreflectance. J. Appl. Phys. 108, 043507 (2010).
34. Ghotbi, M., Ebrahim-Zadeh, M., Majchrowski, A., Michalski, E., and Kityk, I.V.: High-average-power fem-tosecond pulse generation in the blue using BiB3O6 . Opt. Lett. 29, 25302532 (2004).
35. Eesley, G.L.: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 21442151 (1986).
36. Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A., and Mourou, G.A.: Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58, 12121215 (1987).
37. Giri, A., Foley, B.M., and Hopkins, P.E.: Influence of hot electron scattering and electron-phonon interactions on thermal boundary conductance at metal/non-metal interfaces. J. Heat Transfer 136, 092401 (2014).
38. Tas, G., Loomis, J.J., Maris, H.J., Bailes, A.A., and Seiberling, L.E.: Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Appl. Phys. Lett. 72, 22352237 (1998).
39. Losego, M.D., Grady, M.E., Sottos, N.R., Cahill, D.G., and Braun, P.V.: Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502506 (2012).
40. Thomsen, C., Strait, J., Vardeny, Z., Maris, H.J., Tauc, J., and Hauser, J.J.: Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989992 (1984).
41. Thomsen, C., Grahn, H.T., Maris, H.J., and Tauc, J.: Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 41294138 (1986).
42. Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O., and Zhao, J-C.: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298301 (2004).
43. Zheng, X., Cahill, D.G., and Zhao, J-C.: Thermal conductivity imaging of thermal barrier coatings. Adv. Eng. Mater. 7, 622626 (2005).
44. Koh, Y.K., Singer, S.L., Kim, W., Zide, J.M.O., Lu, H., Cahill, D.G., Majumdar, A., and Gossard, A.C.: Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).
45. Hopkins, P.E., Duda, J.C., Clark, S.P., Hains, C.P., Rotter, T.J., Phinney, L.M., and Balakrishnan, G.: Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl. Phys. Lett. 98, 161913 (2011).
46. Allen, T.R., Konings, R.J.M., and Motta, A.T.: Corrosion of zirconium alloys. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 4968.
47. Kim, K-T.: Evolutionary developments of advanced PWR nuclear fuels and cladding materials. Nucl. Eng. Des. 263, 5969 (2013).
48. Foster, J.P., Yueh, K., and Comstock, R.J.: Zirlo cladding improvement. J. ASTM Int. 5, 113 (2007).
49. Wikmark, G., Hallstadius, L., and Yueh, K.: Cladding to sustain corrosion, creep and growth at high burn-ups. Nucl. Eng. Technol. 41, 143148 (2009). Special Issue on the Water Reactor Fuel Performance Meeting 2008.
50. TEM Data taken by Evans Analytical Group.
51. Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 10211028 (2004).
52. Zhernenkov, M., Gill, S., Stanic, V., DiMasi, E., Kisslinger, K., Baldwin, J.K., Misra, A., Demkowicz, M.J., and Ecker, L.: Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 104, 241906 (2014).
53. Höchbauer, T., Misra, A., Hattar, K., and Hoagland, R.G.: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).
54. Hattar, K., Demkowicz, M., Misra, A., Robertson, I., and Hoagland, R.: Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541544 (2008).
55. Demkowicz, M.J., Bhattacharyya, D., Usov, I., Wang, Y.Q., Nastasi, M., and Misra, A.: The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces. Appl. Phys. Lett. 97, 161903 (2010).
56. Demkowicz, M.J., Misra, A., and Caro, A.: The role of interface structure in controlling high helium concentrations. Curr. Opin. Solid State Mater. Sci. 16, 101108 (2012). Material Challenges for Advanced Nuclear Power Systems.
57. Gundrum, B., Cahill, D., and Averback, R.: Thermal conductance of metal-metal interfaces. Phys. Rev. B 72, 15 (2005).
58. Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Höchbauer, T., Misra, A., and Hoagland, R.G.: Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 11291132 (2007).
59. Birtcher, R.C. and Blewitt, T.H.: Damage saturation effects on volume and resistivity changes induced by fission-fragment irradiation of copper. J. Nucl. Mater. 98, 6370 (1981).
60. Wilson, R. and Cahill, D.: Experimental validation of the interfacial form of the Wiedemann-Franz law. Phys. Rev. Lett. 108, 255901 (2012).
61. Cheaito, R., Hattar, K., Gaskins, J.T., Yadav, A.K., Duda, J.C., Beechem, T.E., Ihlefeld, J.F., Piekos, E.S., Baldwin, J.K., Misra, A., and Hopkins, P.E.: Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Appl. Phys. Lett. 106, 093114 (2015).
62. Capinski, W.S. and Maris, H.J.: Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 27202726 (1996).
63. Schmidt, A.J., Cheaito, R., and Chiesa, M.: A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).
64. Malen, J.A., Baheti, K., Tong, T., Zhao, Y., Hudgings, J.A., and Majumdar, A.: Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).

Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

  • Ramez Cheaito (a1), Caroline S. Gorham (a1), Amit Misra (a2), Khalid Hattar (a3) and Patrick E. Hopkins (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed