Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Agboola, Oluranti Sadiku, Emmanuel Rotimi and Mokrani, Tauhami 2016. Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems.


    Gautier, Loïck-Alexandre Le Borgne, Vincent and El Khakani, My Ali 2016. Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition. Carbon, Vol. 98, p. 259.


    Atchudan, Raji Perumal, Suguna Edison, Thomas Nesakumar Jebakumar Immanuel Pandurangan, Arumugam and Lee, Yong Rok 2015. Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method. Physica E: Low-dimensional Systems and Nanostructures, Vol. 74, p. 355.


    Bo, Zheng Mao, Shun Jun Han, Zhao Cen, Kefa Chen, Junhong and Ostrikov, Kostya (Ken) 2015. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev., Vol. 44, Issue. 8, p. 2108.


    Brown, Billyde Cordova, Isvar A. Parker, Charles B. Stoner, Brian R. and Glass, Jeffrey T. 2015. Optimization of Active Manganese Oxide Electrodeposits Using Graphenated Carbon Nanotube Electrodes for Supercapacitors. Chemistry of Materials, Vol. 27, Issue. 7, p. 2430.


    Hussainova, Irina Ivanov, Roman Stamatin, Serban N. Anoshkin, Ilya V. Skou, Eivind M. and Nasibulin, Albert G. 2015. A few-layered graphene on alumina nanofibers for electrochemical energy conversion. Carbon, Vol. 88, p. 157.


    Mombeshora, Edwin T. and Nyamori, Vincent O. 2015. A review on the use of carbon nanostructured materials in electrochemical capacitors. International Journal of Energy Research, Vol. 39, Issue. 15, p. 1955.


    Ubnoske, Stephen M. Raut, Akshay S. Parker, Charles B. Glass, Jeffrey T. and Stoner, Brian R. 2015. Role of nanocrystalline domain size on the electrochemical double-layer capacitance of high edge density carbon nanostructures. MRS Communications, Vol. 5, Issue. 02, p. 285.


    Ubnoske, Stephen M. Peng, Qing Meshot, Eric R. Parker, Charles B. and Glass, Jeffrey T. 2015. Protocol for High-Sensitivity Surface Area Measurements of Nanostructured Films Enabled by Atomic Layer Deposition of TiO2. The Journal of Physical Chemistry C, Vol. 119, Issue. 46, p. 26119.


    Wang, Zhipeng Ogata, Hironori Morimoto, Shingo Ortiz-Medina, Josue Fujishige, Masatsugu Takeuchi, Kenji Muramatsu, Hiroyuki Hayashi, Takuya Terrones, Mauricio Hashimoto, Yoshio and Endo, Morinobu 2015. Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon, Vol. 94, p. 479.


    Zanin, H. Ceragioli, H.J. Peterlevitz, A.C. Baranauskas, Vitor Marciano, F.R. and Lobo, A.O. 2015. Field emission properties of the graphenated carbon nanotube electrode. Applied Surface Science, Vol. 324, p. 174.


    Brown, Billyde Swain, Benjamin Hiltwine, Judy Brooks, D. Bradford and Zhou, Zhiguo 2014. Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. Journal of Power Sources, Vol. 272, p. 979.


    Fattahi, Pouria Yang, Guang Kim, Gloria and Abidian, Mohammad Reza 2014. A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Advanced Materials, Vol. 26, Issue. 12, p. 1846.


    Henry, Philémon A. Raut, Akshay S. Ubnoske, Stephen M. Parker, Charles B. and Glass, Jeffrey T. 2014. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films. Electrochemistry Communications, Vol. 48, p. 103.


    Karthik, P.S. Himaja, A.L. and Singh, Surya Prakash 2014. Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon letters, Vol. 15, Issue. 4, p. 219.


    Oduah, Uzoma I. 2014. Fabrication of a CHMOSFET with a Combination of P-Carbon Nanotube and an Enhanced NMOS. International Journal of Materials Science and Engineering,


    Stoner, B.R. Brown, B. and Glass, J.T. 2014. Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes. Diamond and Related Materials, Vol. 42, p. 49.


    Ubnoske, Stephen M. Raut, Akshay S. Brown, Billyde Parker, Charles B. Stoner, Brian R. and Glass, Jeffrey T. 2014. Perspectives on the Growth of High Edge Density Carbon Nanostructures: Transitions from Vertically Oriented Graphene Nanosheets to Graphenated Carbon Nanotubes. The Journal of Physical Chemistry C, Vol. 118, Issue. 29, p. 16126.


    Atchudan, R. Joo, Jin. and Pandurangan, A. 2013. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Materials Research Bulletin, Vol. 48, Issue. 6, p. 2205.


    Bo, Zheng Yang, Yong Chen, Junhong Yu, Kehan Yan, Jianhua and Cen, Kefa 2013. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, Vol. 5, Issue. 12, p. 5180.


    ×

Three-dimensional arrays of graphenated carbon nanotubes

  • Charles B. Parker (a1), Akshay S. Raut (a1), Billyde Brown (a1), Brian R. Stoner (a2) and Jeffrey T. Glass (a3)
  • DOI: http://dx.doi.org/10.1557/jmr.2012.43
  • Published online: 27 March 2012
Abstract
Abstract

Graphene and carbon nanotubes (CNTs) are fascinating materials, both scientifically and technologically, due to their exceptional properties and potential use in applications ranging from high-frequency electronics to energy storage devices. This manuscript introduces a hybrid structure consisting of graphitic foliates grown along the length of aligned multiwalled CNTs. The foliate density and layer thickness vary as a function of deposition conditions, and a model is proposed for their nucleation and growth. The hybrid structures were studied using electron microscopy and Raman spectroscopy. The foliates consist of edges that approach the dimensions of graphene and provide enhanced charge storage capacity. Electrochemical impedance spectroscopy indicated that the weight-specific capacitance for the graphenated CNTs was 5.4× that of similar CNTs without the graphitic foliates. Pulsed charge injection measurements demonstrated a 7.3× increase in capacitance per unit area. These data suggest that this unique structure integrates the high surface charge density of the graphene edges with the high longitudinal conductivity of the CNTs and may have significant impact in charge storage and related applications.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: charles.parker@duke.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.H.T. Hall : Ultra-high-pressure, high-temperature apparatus: The “belt”. Rev. Sci. Instrum. 31(2), 125 (1960).

2.M. Werner and R. Locher : Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 61(12), 1665 (1998).

3.H.W. Kroto , J.R. Heath , S.C. O’Brien , R.F. Curl , and R.E. Smalley : C60: Buckminsterfullerene. Nature 318, 162 (1985).

4.S. Iijima : Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

6.K.S. Novoselov , A.K. Geim , S.V. Morozov , D. Jiang , Y. Zhang , S.V. Dubonos , I.V. Grigorieva , and A.A. Firsov : Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

7.Y.H. Wu , T. Yu , and Z.X. Shen : Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010).

8.M. Pumera , A. Ambrosi , A. Bonanni , E.L.K. Chng , and H.L. Poh : Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 29(9), 954 (2010).

9.D. Wei and Y. Liu : Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).

10.S. Trasobares , C.P. Ewels , J. Birrell , O. Stephan , B.Q. Wei , J.A. Carlisle , D. Miller , P. Keblinski , and P.M. Ajayan : Carbon nanotubes with graphitic wings. Adv. Mater. 16(7), 610613 (2004).

11.K. Yu , G. Lu , Z. Bo , S. Mao , and J. Chen : Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 15561562 (2011).

12.B.R. Stoner , A.S. Raut , B. Brown , C.B. Parker , and J.T. Glass : Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl. Phys. Lett. 99(18), 183104 (2011).

13.J-P. Randin and E. Yeager : Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 118(5), 711 (1971).

15.S.F. Cogan : Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275 (2008).

16.S. Natarajan , K.H. Gilchrist , J.R. Piascik , C.B. Parker , J.T. Glass , and B.R. Stoner : Simulation and testing of a lateral, microfabricated electron-impact ion source. Appl. Phys. Lett. 94(4), 044109 (2009).

17.R. Kurt , A. Karimi , and V. Hoffmann : Growth of decorated carbon nano-tubes. Chem. Phys. Lett. 335, 545 (2001).

18.O. Lourie and H.D. Wagner : Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59(6), 975 (1999).

19.R. Kurt and A. Karimi : Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. ChemPhysChem 2(6), 388 (2001).

20.R. Kurt , C. Klinke , J.M. Bonard , K. Kern , and A. Karimi : Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD. Carbon 39, 21632001.

21.D. Mata , M. Ferro , A.J.S. Fernandes , M. Amaral , F.J. Oliveira , P.M.F.J. Costa , and R.F. Silva : Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon 48(10), 2839 (2010).

22.H. Cui , O. Zhou , and B.R. Stoner : Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000. 88(10): p. 60726074.

23.M. Endo , K. Takeuchi , T. Hiraoka , T. Furuta , T. Kasai , X. Sun , C.H. Kiang , and M.S. Dresselhaus : Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58(11), 1707 (1997).

24.M. Zhu , J. Wang , B.C. Holloway , R.A. Outlaw , X. Zhao , K. Hou , V. Shutthanandan , and D.M. Manos : A mechanism for carbon nanosheet formation. Carbon, 2007. 45(11), pp. 22292234.

25.D.A. Porter and K.E. Easterling : Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, New York, 1992).

26.D.K. Singh , P.K. Iyer , and P.K. Giri : Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by x-ray diffraction and Raman scattering studies. Diamond Relat. Mater. 19, 1281 (2010).

27.A.C. Ferrari , J.C. Meyer , V. Scardaci , C. Casiraghi , M. Lazzeri , F. Mauri , S. Piscanec , D. Jiang , K.S. Novoselov , S. Roth , and A.K. Geim : Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) 187401 (2006).

28.C. Faugeras , A. Nerriere , M. Potemski , A. Mahmood , E. Dujardin , C. Berger , and W.A. de Heer : Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 92(1), 011914 (2008).

29.M.S. Dresselhaus , A. Jorio , M. Hofmann , G. Dresselhaus , and R. Saito : Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751 (2010).

30.X-F. Li , B-L. Wang , and K.Y. Lee : Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009).

31.Y. Sun and Q. Chen : Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95(2), 021901 (2009).

32.M-F. Yu , O. Lourie , M.J. Dyer , K. Moloni , T.F. Kelly , and R.S. Ruoff : Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).

33.K. Lee , B. Lukic , A. Magrez , J.W. Seo , G.A.D. Briggs , A.J. Kulik , and L. Forro : Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Nano Lett. 7(6), 1598 (2007).

34.P. Poncharal , Z.L. Wang , D. Ugarte , and W.A. de Heer : Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

35.D.H. Robertson , D.W. Brenner , and J.W. Mintmire : Energetics of nanoscale graphitic tubules. Phys. Rev. B 45(21), 1259212595 (1992).

36.B. Peng , M. Locascio , P. Zapol , S. Li , S.L. Mielke , G.C. Schatz , and H.D. Espinosa : Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10), 626631 (2008).

37.M-S. Wang , D. Golberg , and Y. Bando : Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).

38.Y. Nakayama : Plasticity of carbon nanotubes: Aiming at their use in nanosized devices. Jpn. J. Appl. Phys. 46, 5005 (2007).

39.C. Wei , K. Cho , and D. Srivastava : Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003).

40.E.T. Thostenson and T-W. Chou : Nanotube buckling in aligned multi-wall carbon nanotube composites. Carbon 42(14), 3015 (2004).

41.C. Ducati , I. Alexandrou , M. Chhowalla , J. Robertson , and G.A.J. Amaratunga : The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 95(11), 6387 (2004).

43.C. Du , J. Yeh , and N. Pan : High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4), 350 (2005).

44.V.V.N. Obreja : On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40(7), 2596 (2008).

45.J. Li and R.J. Andrews : Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays, in Operative Neuromodulation, edited by D.E. Sakas and B.A. Simpson (Springer-Verlag, Austria, 2007), pp. 537545.

46.S. Minnikanti , P. Skeath , and N. Peixoto : Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47(3), 884 (2009).

47.T.D.B. Nguyen-Vu , C. Hua , A.M. Cassell , R.J. Andrews , M. Meyyappan , and L. Jun : Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans.Biomed. Eng. 54(6), 1121 (2007).

49.K. Wang , H.A. Fishman , H. Dai , and J.S. Harris : Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043 (2006).

50.A. Mazzatenta , M. Giugliano , S. Campidelli , L. Gambazzi , L. Businaro , H. Markram , M. Prato , and L. Ballerini : Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931 (2007).

51.S. Minnikanti , M.G. Pereira , S. Jaraiedi , K. Jackson , C.M. Costa-Neto , Q. Li , and N. Peixoto : In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J. Neural Eng. 7(1), 16002 (2010).

52.S.R. Yeh , Y.C. Chen , H.C. Su , T.R. Yew , H.H. Kao , Y.T. Lee , T.A. Liu , H. Chen , Y.C. Chang , and P. Chang : Interfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance. Langmuir 25(13), 7718 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: