Skip to main content
×
×
Home

Toward efficient solar water splitting over hematite photoelectrodes

  • Shaohua Shen (a1)
Abstract

Hematite has been considered as one of the most promising materials for solar water splitting, although its photoelectrochemical performance is still not very high and limited by its intrinsic properties. In the past few years, sizable advances in the development of hematite photoelectrodes for enhanced water splitting activities have been achieved by a variety of rational modification strategies, including nanostructure design for efficient charge collection, metal ion doping for promoted charge carrier transfer, heterojunctions for efficient charge separation, and surface and/or interface modification for retarded charge recombination and enhanced light absorption. In this article, research work and milestone achievement actually focused on hematite photoelectrodes for water splitting is reviewed in detail. A review on this topic by answering the key question, “how to modify or design hematite photoelectrode to improve its conductivity, enhance charge separation as well as catalyze surface water oxidation,” in authors' view, can be potentially helpful to enable hematite for further efficient solar energy conversion, which will be very inspiring and important to this field.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: shshen_xjtu@mail.xjtu.edu.cn
References
Hide All
1. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
2. Chen, X., Shen, S., Guo, L., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).
3. Shen, S., Shi, J., Guo, P., and Guo, L.: Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8, 523 (2011).
4. Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).
5. Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J.: Nanophotocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).
6. Shen, S. and Mao, S.S.: Nanostructure designs for effective solar-to-hydrogen conversion. Nanophotonics 1, 31 (2012).
7. Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., and Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2010).
8. Brillet, J., Cornuz, M., Le Formal, F., Yum, J-H., Grätzel, M., and Sivula, K.: Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17 (2010).
9. Sartoretti, C.J., Ulmann, M., Alexander, B.D., Augustynski, J., and Weidenkaff, A.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Chem. Phys. Lett. 376, 194 (2003).
10. Kennedy, J.H. and Frese, J.K.W.: Photooxidation of water at alpha-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709 (1978).
11. Morin, F.J.: Electrical properties of αFe2O3 and αFe2O3 containing titanium. Phys. Rev. 83, 1005 (1951).
12. Morin, F.J.: Electrical properties of α-Fe2O3 . Phys. Rev. 93, 1195 (1954).
13. Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79, 2027 (1983).
14. Sivula, K., Formal, F.L., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).
15. Katz, M.J., Riha, S.C., Jeong, N.C., Martinson, A.B.F., Farha, O.K., and Hupp, J.T.: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256, 2521 (2012).
16. Wheeler, D.A., Wang, G., Ling, Y., Li, Y., and Zhang, J.Z.: Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5, 6682 (2012).
17. Bora, D.K., Braun, A., and Constable, E.C.: “In rust we trust”. Hematite: The prospective inorganic backbone for artificial photosynthesis. Energy Environ. Sci. 6, 407 (2013).
18. Hamann, T.W.: Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 41, 7830 (2012).
19. Cesar, I., Sivula, K., Kay, A., Zboril, R., and Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009).
20. Vayssieres, L., Beermann, N., Lindquist, S.E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13, 233 (2001).
21. Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71, 231 (2002).
22. de Carvalho, V.A.N., de S. Luz, R.A., Lima, B.H., Crespilho, F.N., Leite, E.R., and Souza, F.L.: Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J. Power Sources 205, 525 (2012).
23. Pradhan, G.K. and Parida, K.M.: Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3, 317 (2011).
24. Chernomordik, B.D., Russell, H.B., Cvelbar, U., Jasinski, J.B., Kumar, V., Deutsch, T., and Sunkara, M.K.: Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23, 194009 (2012).
25. Grigorescu, S., Lee, C.Y., Lee, K., Albu, S., Paramasivam, I., Demetrescu, I., and Schmuki, P.: Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochem. Commun. 23, 59 (2012).
26. Chang, C.Y., Wang, C.H., Tseng, C.J., Cheng, K.W., Hourng, L.W., and Tsai, B.T.: Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 37, 13616 (2012).
27. Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R.J., and Jin, S.: Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12, 724 (2012).
28. Mao, A., Shin, K., Kim, J.K., Wang, D., Han, G., and Park, J.H.: Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: Nanorods versus nanotubes. ACS Appl. Mater. Interfaces 3, 1852 (2011).
29. Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., and Grimes, C.A.: Vertically oriented Ti–Fe–O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356 (2007).
30. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2007).
31. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., and Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).
32. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 (2006).
33. Mor, G.K., Varghese, O.K., Wilke, R.H.T., Sharma, S., Shankar, K., Latempa, T.J., Choi, K.S., and Grimes, C.A.: P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906 (2008).
34. Prakasam, H.E., Varghese, O.K., Paulose, M., Mor, G.K., and Grimes, C.A.: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285 (2006).
35. Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048 (2009).
36. Zhang, Z., Hossain, M.F., and Takahashi, T.: Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal., B 95, 423 (2010).
37. Jun, H., Im, B., Kim, J.Y., Im, Y.O, Jang, J.W., Kim, E.S., Kim, J.Y., Kang, H.J., Hong, S.J., and Lee, J.S.: Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy Environ. Sci. 5, 6375 (2012).
38. Rangaraju, R.R., Panday, A., Raja, K.S., and Misra, M.: Nanostructured anodic iron oxide film as photoanode for water oxidation. J. Phys. D: Appl. Phys. 42, 135303 (2009).
39. Sivula, K., Zboril, R., Formal, F.L., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., and Grätzel, M.: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436 (2010).
40. Brillet, J., Grätzel, M., and Sivula, K.: Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 10, 4155 (2010).
41. Gonçalves, R.H., Lima, B.H.R., and Leite, E.R.: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 6012 (2011).
42. Hamd, W., Cobo, S., Fize, J., Baldinozzi, G., Schwartz, W., Reymermier, M., Pereira, A., Fontecave, M., Artero, V., Robert, C.L., and Sanchez, C.: Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation. Phys. Chem. Chem. Phys. 14, 13224 (2012).
43. Wang, L., Lee, C.Y., and Schmuki, P.: Solar water splitting: Preserving the beneficial small feature size in porous α-Fe2O3 photoelectrodes during annealing. J. Mater. Chem. A 1, 212 (2013).
44. Rahman, G. and Joo, O.S.: Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. J. Mater. Chem. A 1, 5554 (2013).
45. Vincent, T., Gross, M., Dotan, H., and Rothschild, A.: Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. Int. J. Hydrogen Energy 37, 8102 (2012).
46. Tamboli, S.H., Rahman, G., and Joo, O.S.: Influence of potential, deposition time and annealing temperature on photoelectrochemical properties of electrodeposited iron oxide thin films. J. Alloys Compd. 520, 232 (2012).
47. Shinde, P.S., Go, G.H., and Lee, W.J.: Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. J. Mater. Chem. 22, 10469 (2012).
48. Patil, S.A., Shinde, D.V., Kim, E., Lee, J.K., Mane, R.S., and Han, S.H.: Photoelectrochemistry of solution processed hematite nanoparticles, nanoparticle-chains and nanorods. RSC Adv. 2, 11808 (2012).
49. Zheng, J.Y., Kang, M.J., Song, G., Son, S.I., Suh, S.P., Kim, C.W., and Kang, Y.S.: Morphology evolution of dendritic Fe wire array by electrodeposition, and photoelectrochemical properties of α-Fe2O3 dendritic wire array. Cryst. Eng. Commun. 14, 6957 (2012).
50. Kay, A., Cesar, I., and Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006).
51. Riha, S.C., Vermeer, M.J.D., Pellin, M.J., Hupp, J.T., and Martinson, A.B.F.: Hematite-based photo-oxidation of water using transparent distributed current collectors. ACS Appl. Mater. Interfaces 5, 360 (2013).
52. Launay, J.C. and Horowitz, G.: Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal. J. Cryst. Growth 57, 118 (1982).
53. Cao, D., Luo, W., Li, M., Feng, J., Li, Z., and Zou, Z.: A transparent Ti4+ doped hematite photoanode protectively grown by a facile hydrothermal method. Cryst. Eng. Commun. 15, 2386 (2013).
54. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S.T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).
55. Lian, X., Yang, X., Liu, S., Xu, Y., Jiang, C., Chen, J., and Wang, R.: Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl. Surf. Sci. 258, 2307 (2012).
56. Kumari, S., Singh, A.P., Sonal, , Deva, D., Shrivastav, R., Dass, S., and Satsangi, V.R.: Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int. J. Hydrogen Energy 35, 3985 (2010).
57. Kronawitter, C.X., Mao, S.S., and Antoun, B.R.: Doped, porous iron oxide films and their optical functions and anodic photocurrents for solar water splitting. Appl. Phys. Lett. 98, 092108 (2011).
58. Zandi, O., Klahr, B.M., and Hamann, T.W.: Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer. Energy Environ. Sci. 6, 634 (2013).
59. Zhang, P., Shwarsctein, A.K., Hu, Y.S., Lefton, J., Sharma, S., Formand, A.J., and McFarland, E.: Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ. Sci. 4, 1020 (2011).
60. Wang, G., Ling, Y., Wheeler, D.A., George, K.E.N., Horsley, K., Heske, C., Zhang, J.Z., and Li, Y.: Facile synthesis of highly photoactive r-Fe2O3-based films for water oxidation. Nano Lett. 11, 3503 (2011).
61. Kumar, P., Sharma, P., Shrivastav, R., Dass, S., and Satsangi, V.R.: Electrodeposited zirconium-doped α-Fe2O3thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 36, 2777 (2011).
62. Kumar, P., Sharma, P., Joshi, A.G., Shrivastav, R., Dass, S., and Satsangi, V.R.: Nano porous hematite for solar hydrogen production. J. Electrochem. Soc. 159(8), H685 (2012).
63. Shwarsctein, A.K., Huda, M.N., Walsh, A., Yan, Y., Stucky, G.D., Hu, Y., Al-Jassim, M.M., and McFarland, E.W.: Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: Experiment and theory. Chem. Mater. 22, 510 (2010).
64. Hu, Y., Shwarsctein, A.K., Forman, A.J., Hazen, D., Park, J.N., and McFarland, E.W.: Pt-doped r-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803 (2008).
65. Shwarsctein, A.K., Hu, Y., Forman, A.J., Stucky, G.D., and McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).
66. Yarahmadi, S.S., Wijayantha, K.G.U., Tahir, A.A., and Vaidhyanathan, B.: Nanostructured r-Fe2O3 electrodes for solar driven water splitting: Effect of doping agents on preparation and performance. J. Phys. Chem. C 113, 4768 (2009).
67. Lukowski, M.A. and Jin, S.: Improved synthesis and electrical properties of Si-doped α-Fe2O3 nanowires. J. Phys. Chem. C 115, 12388 (2011).
68. Souza, F.L., Lopes, K.P., Nascente, P.A.P., and Leite, E.R.: Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362 (2009).
69. Chemelewski, W.D., Hahn, N.T., and Mullins, C.B.: Effect of Si doping and porosity on hematite’s (α-Fe2O3) photoelectrochemical water oxidation performance. J. Phys. Chem. C 116, 5255 (2012).
70. Morrish, R., Rahman, M., MacElroy, J.M.D., and Wolden, C.A.: Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 4, 474 (2011).
71. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).
72. Frydrych, J., Machala, L., Tucek, J., Siskova, K., Filip, J., Pechousek, J., Safarova, K., Vondracek, M., Seo, J.H., Schneeweiss, O., Grätzel, M., Sivula, K., and Zboril, R.: Facile fabrication of tin-doped hematite photoelectrodes–effect of doping on magnetic properties and performance for light-induced water splitting. J. Mater. Chem. 22, 23232 (2012).
73. Meng, X., Qin, G., Goddard, W.A. III, Li, S., Pan, H., Wen, X., Qin, Y., and Zuo, L.: Theoretical understanding of enhanced photoelectrochemical catalytic activity of Sn-doped hematite: Anisotropic catalysis and effects of morin transition and Sn doping. J. Phys. Chem. C 117, 3779 (2013).
74. Shen, S., Kronawitter, C.X., Jiang, J., Mao, S.S., and Guo, L.: Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 5, 327 (2012).
75. Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Stepanyan, G.M., Turner, J.A., and Khaselev, O.: Investigation of ceramic Fe2O3 photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27, 33 (2002).
76. Sanchez, C., Hendewerk, M., Sieber, K.D., and Somorjai, G.A.: Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals. J. Solid State Chem. 61, 47 (1986).
77. Miyake, H. and Kozuka, H.: Photoelectrochemical properties of Fe2O3-Nb2O5 films prepared by sol-gel method. J. Phys. Chem. B 109, 17951 (2005).
78. Liu, J., Liang, C., Xu, G., Tian, Z., Shao, G., and Zhang, L.: Ge-doped hematite nanosheets with tunable doping level, structure and improved photoelectrochemical performance. Nano Energy 2, 328 (2013).
79. Liu, Y., Yu, Y., and Zhang, W.: Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochim. Acta 59, 121 (2012).
80. Seki, M., Yamahara, H., and Tabata, H.: Enhanced photocurrent in Rh-substituted α-Fe2O3 thin films grown by pulsed laser deposition. Appl. Phys. Exp. 5, 115801 (2012).
81. Liao, P., Toroker, M.C., and Carter, E.A.: Electron transport in pure and doped hematite. Nano Lett. 11, 1775 (2011).
82. Ingler, W.B. Jr., Baltrus, J.P. and Khan, S.U.M.: Photoresponse of p-type zinc-doped iron(III) oxide thin films. J. Am. Chem. Soc. 126, 10238 (2004).
83. Ingler, W.B. Jr. and Khan, S.U.M.: Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting. Int. J. Hydrogen Energy 30, 821 (2005).
84. Ingler, W.B. Jr. and Khan, S.U.M.: Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination. Thin Solid Films 461, 301 (2004).
85. Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, I.A., and Augustynski, J.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 13685 (2005).
86. Jang, J.S., Lee, J., Ye, H., Fan, F.F., and Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113, 6719 (2009).
87. Tang, H., Yin, W., Matin, M.A., Wang, H., Deutsch, T., Al-Jassim, M.M., Turner, J.A., and Yan, Y.: Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting. J. Appl. Phys. 111, 073502 (2012).
88. Spray, R.L., McDonald, K.J., and Choi, K.S.: Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115, 3497 (2011).
89. Shen, S., Jiang, J., Guo, P., Kronawitter, C.X., Mao, S.S., and Guo, L.: Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 1, 732 (2012).
90. Xi, L., Chi, S., Mak, W.F., Tran, P.D., Barber, J., Loo, S.C.J., and Wong, L.H.: A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem. Sci. 4, 164 (2013).
91. Cheng, W., He, J., Sun, Z., Peng, Y., Yao, T., Liu, Q., Jiang, Y., Hu, F., Xie, Z., He, B., and Wei, S.: Ni-doped overlayer hematite nanotube: A highly photoactive architecture for utilization of visible light. J. Phys. Chem. C 116, 24060 (2012).
92. Franking, R., Li, L., Lukowski, M.A., Meng, F., Tan, Y., Hamers, R.J., and Jin, S.: Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6, 500 (2013).
93. Mayer, M.T., Lin, Y., Yuan, G., and Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc. Chem. Res. 46, 1558 (2013).
94. Luo, W., Yu, T., Wang, Y., Li, Z., Ye, J., and Zou, Z.: Enhanced photocurrent–voltage characteristics of WO3/Fe2O3 nano-electrodes. J. Phys. D: Appl. Phys. 40, 1091 (2007).
95. Kronawitter, C.X., Vayssieres, L., Shen, S., Guo, L., Wheeler, D.A., Zhang, J., Antoun, B.R., and Mao, S.S.: A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889 (2011).
96. Dhanasekaran, P., Salunke, H.G., and Gupta, N.M.: Visible-light-induced photosplitting of water over γ′-Fe4N and γ′-Fe4N/α-Fe2O3 nanocatalysts. J. Phys. Chem. C 116, 12156 (2012).
97. Miao, C., Ji, S., Xu, G., Liu, G., Zhang, L., and Ye, C.: Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation. ACS Appl. Mater. Interfaces 4, 4428 (2012).
98. Hou, Y., Zuo, F., Dagg, A., and Feng, P.: A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 52, 1248 (2013).
99. Mayer, M.T., Du, C., and Wang, D.: Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc. 134, 12406 (2012).
100. Li, J., Meng, F., Suri, S., Ding, W., Huang, F., and Wu, N.: Photoelectrochemical performance enhanced by a nickel oxide–hematite p–n junction photoanode. Chem. Commun. 48, 8213 (2012).
101. Lin, Y., Xu, Y., Mayer, M.T., Simpson, Z.I., McMahon, G., Zhou, S., and Wang, D.: Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508 (2012).
102. Lin, Y., Zhou, S., Sheehan, S.W., and Wang, D.: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398 (2011).
103. Yu, B. and Kwak, S.Y.: Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem. 22, 8345 (2012).
104. Liu, Y., Wang, D., Yu, Y., and Zhang, W.: Preparation and photoelectrochemical properties of functional carbon nanotubes and Ti co-doped Fe2O3 thin films. Int. J. Hydrogen Energy 37, 9566 (2012).
105. He, L., Jing, L., Li, Z., Sun, W., and Liu, C.: Enhanced visible photocatalytic activity of nanocrystalline α-Fe2O3 by coupling phosphate-functionalized graphene. RSC Adv. 3, 7438 (2013).
106. Kim, J.Y., Jang, J.W., Youn, D.H., Kim, J.Y., Kim, E.S., and Lee, J.S.: Graphene–carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Adv. 2, 9415 (2012).
107. Hou, Y., Zuo, F., Dagg, A., and Feng, P.: Visible light-driven α-Fe2O3 nanorod/graphene/BiV1−xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12, 6464 (2012).
108. Pendlebury, S.R., Barroso, M., Cowan, A.J., Sivula, K., Tang, J., Grätzel, M., Kluga, D., and Durrant, J.R.: Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 47, 716 (2011).
109. Yang, J., Wang, D., Han, H., and Li, C.: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1990 (2013).
110. Yokoyama, D., Hashiguchi, D., Maeda, K., Minegishi, T., Takata, T., Abe, R., Kubota, J., and Domen, K.: Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films. 519(7), 2087 (2011).
111. Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., and Domen, K.: SrNbO2N as a water-splitting photoanode with a wide visible light absorption band. J. Am. Chem. Soc. 133, 12334 (2011).
112. Le Paven-Thivet, C., Ishikawa, A., Ziani, A., Le Gendre, L., Yoshida, M., Kubota, J., Tessier, F., and Domen, K.: Photoelectrochemical properties of crystalline perovskite lanthanum titanium oxynitride films under visible light. J. Phys. Chem. C 113, 6156 (2009).
113. Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405 (2010).
114. Badia-Bou, L., Mas-Marza, E., Rodenas, P., Barea, E.M., Fabregat-Santiago, F., Gimenez, S., Peris, E., and Bisquert, J.: Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C 117, 3826 (2013).
115. Sun, K., Park, N., Sun, Z., Zhou, J., Wang, J., Pang, X., Shen, S., Noh, S., Jing, Y., Jin, S., Yu, P.K.L., and Wang, D.: Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 5, 7872 (2012).
116. Sun, K., Pang, X., Shen, S., Qian, X., Cheung, J.S., and Wang, D.: Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Nano Lett. 13, 2064 (2013).
117. Wang, G., Ling, Y., Lu, X., Zhai, T., Qian, F., Tong, Y., and Li, Y.: A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 5, 4129 (2013).
118. Alan, K.S., Hu, Y., Stucky, G.D., and McFarland, E.W.: NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 11, 1150 (2009).
119. Elizarova, G.L., Zhidomirov, G.M., and Parmon, V.N.: Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen. Catal. Today 58, 71 (2000).
120. Artero, V., Chavarot-Kerlidou, M., and Fontecave, M.: Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238 (2011).
121. Majumder, S.A. and Khan, S.U.M.: Photoelectrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode. Int. J. Hydrogen Energy 19, 881 (1994).
122. Jiao, F. and Frei, H.: Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841 (2009).
123. Jiao, F. and Frei, H.: Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 46, 2920 (2010).
124. Xi, L., Tran, P.D., Chiam, S.Y., Bassi, P.S., Mak, W.F., Mulmudi, H.K., Batabyal, S.K., Barber, J., Loo, J.S.C., and Wong, L.H.: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116, 13884 (2012).
125. Riha, S.C., Klahr, B.M., Tyo, E.C., Seifert, S., Vajda, S., Pellin, M.J., Hamann, T.W., and Martinson, A.B.F.: Atomic layer deposition of a sub-monolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 7, 2396 (2013).
126. Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ . Science 321, 1072 (2008).
127. Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009).
128. Zhong, D.K. and Gamelin, D.R.: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202 (2010).
129. Zhong, D.K., Cornuz, M., Sivula, K., Grätzel, M., and Gamelin, D.R.: Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759 (2011).
130. Klahr, B., Gimenez, S., Santiago, F.F., Bisquert, J., and Hamann, T.W.: Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693 (2012).
131. Barroso, M., Cowan, A.J., Pendlebury, S.R., Grätzel, M., Klug, D.R., and Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 14868 (2011).
132. Hong, Y., Liu, Z., Al-Bukhari, S.F.B.S.A., Lee, C.J.J., Yung, D.L., Chi, D., and Hor, T.S.A.: Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem. Commun. 47, 10653 (2011).
133. Chen, X., Ren, X., Liu, Z., Zhuang, L., and Lu, J.: Promoting the photoanode efficiency for water splitting by combining hematite and molecular Ru catalysts. Electrochem. Commun. 27, 148 (2013).
134. Klahr, B., Gimenez, S., Santiago, F.F., Hamann, T., and Bisquert, J.: Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134, 4294 (2012).
135. Le Formal, F., Tétreault, N., Cornuz, M., Moehl, T., Grätzel, M., and Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).
136. Hisatomi, T., Le Formal, F., Cornuz, M., Brillet, J., Tétreault, N., Sivula, K., and Grätzel, M.: Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 4, 2512 (2011).
137. Leroy, C.M., Maegli, A.E., Sivula, K., Hisatomi, T., Xanthopoulos, N., Otal, E.H., Yoon, S., Weidenkaff, A., Sanjines, R., and Grätzel, M.: LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. Chem. Commun. 48, 820 (2012).
138. Le Formal, F., Sivula, K., and Grätzel, M.: The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116, 26707 (2012).
139. Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Grätzel, M., Klug, D.R., and Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. U.S.A. 109, 15640 (2012).
140. Xi, L., Bassi, P.S., Chiam, S.Y., Mak, W.F., Tran, P.D., Barber, J., Loo, J.S.C., and Wong, L.H.: Surface treatment of hematite photoanodes with zinc acetate for water oxidation. Nanoscale 4, 4430 (2012).
141. Zhang, M., Luo, W., Zhang, N., Li, Z., Yu, T., and Zou, Z.: A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting. Electrochem. Commun. 23, 41 (2012).
142. Le Formal, F., Grätzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099 (2010).
143. Hisatomi, T., Brillet, J., Cornuz, M., Le Formal, F., Tétreault, N., Sivula, K., and Grätzel, M.: A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. Faraday Discuss. 155, 223 (2012).
144. Hisatomi, T., Dotan, H., Stefik, M., Sivula, K., Rothschild, A., Grätzel, M., and Mathews, N.: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24, 2699 (2012).
145. Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., and Rothschild, A.: Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12, 158 (2013).
146. Liao, P., Keith, J.A., and Carter, E.A.: Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 134, 13296 (2012).
147. Liao, P. and Carter, E.A.: Hole transport in pure and doped hematite. J. Appl. Phys. 112, 013701 (2012).
148. Huang, Z., Lin, Y., Xiang, X., Córdoba, W.R., McDonald, K.J., Hagen, K.S., Choi, K.S., Brunschwig, B.S., Musaev, D.G., Hill, C.L., Wang, D., and Lian, T.: In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy Environ. Sci. 5, 8923 (2012).
149. Kronawitter, C.X., Zegkinoglou, I., Rogero, C., Guo, J.H., Mao, S.S., Himpsel, F.J., and Vayssieres, L.: On the interfacial electronic structure origin of efficiency enhancement in hematite photoanodes. J. Phys. Chem. C 116, 22780 (2012).
150. Kronawitter, C.X., Bakke, J.R., Wheeler, D.A., Wang, W., Chang, C., Antoun, B.R., Zhang, J., Guo, J., Bent, S.F., Mao, S.S., and Vayssieres, L.: Electron enrichment in 3d transition metal oxide hetero-nanostructures. Nano Lett. 11, 3855 (2011).
151. Peter, L.M.: Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: The example of hematite. J. Solid State Electrochem. 17, 315 (2013).
152. Cummings, Y., Marken, F., Peter, L.M., Tahir, A.A., and Wijayantha, G.U.: Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 48, 2027 (2012).
153. Klahr, B., Gimenez, S., Santiago, F.F., Bisquert, J., and Hamann, T.W.: Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626 (2012).
154. Cummings, C.Y., Marken, F., Peter, L.M., Wijayantha, K.G.U., and Tahir, A.A.: New insights into water splitting at mesoporous α-Fe2O3 films: A study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 1228 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed