Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T16:39:55.379Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of n= 1–5 Srn+1TinO3n+1 epitaxial thin films

Published online by Cambridge University Press:  31 January 2011

W. Tian
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109–2136
X. Q. Pan*
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109–2136
J. H. Haeni
Affiliation:
Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16803–6602
D. G. Schlom
Affiliation:
Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16803–6602
*
a)Address all correspondence to this author. e-mail: panx@umich.edu
Get access

Abstract

Epitaxial Srn+1TinO3n+1 thin films with n = 1–5 were synthesized on (001) SrTiO3 substrates by reactive molecular beam epitaxy. The structure and microstructure of the films were investigated by x-ray diffraction, transmission electron microbeam diffraction, and high-resolution transmission electron microscopy (HRTEM) in combination with computer image simulations. Both diffraction and HRTEM studies revealed that all the films are epitaxially oriented with their c axis perpendicular to the (001) SrTiO3 plane of the substrate. Detailed investigations using quantitative HRTEM methods indicated that the films have the expected n = 1–5 structures of the Ruddlesden–Popper Srn+1TinO3n+1 homologous series. Among these films, Sr2TiO4, Sr3Ti2O7, and Sr4Ti3O10 thin films are nearly free of intergrowths, while Sr5Ti4O13 and Sr6Ti5O16 thin films contain noticeably more antiphase boundaries in their perovskite sheets and intergrowth defects. We show that these results are consistent with what is known about the thermodynamics of Srn+1TinO3n+1 phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Müller-Buschbaum, H., Angew. Chem., Int. Ed. Engl. 28, 1472 (1989).CrossRefGoogle Scholar
2.Moritomo, Y., Asamitsu, A., Kuwahara, H., and Tokura, Y., Nature (London) 380, 141 (1996).CrossRefGoogle Scholar
3.Ruddlesden, S.N. and Popper, P., Acta Crystallogr. 10, 538 (1957).CrossRefGoogle Scholar
4.Ruddlesden, S.N. and Popper, P., Acta Crystallogr. 11, 54 (1958).CrossRefGoogle Scholar
5.Balachandran, U. and Eror, N.G., J. Mater. Sci. 17, 2133 (1982).CrossRefGoogle Scholar
6.Smyth, D.M., Annu. Rev. Mater. Sci. 15, 329 (1985).CrossRefGoogle Scholar
7.Witek, S., Smyth, D.M., and Pickup, H., J. Am. Ceram. Soc. 67, 372 (1984).CrossRefGoogle Scholar
8.Fujimoto, M. and Watanabe, M., J. Mater. Sci. 20, 3683 (1985).CrossRefGoogle Scholar
9.Dryś, M. and Trzebiatowski, W., Rocz. Chem. 31, 489 (1957).Google Scholar
10.Phase Diagrams for Ceramists, edited by Levin, E.M., Robbins, C.R., and McMurdie, H.F. (American Ceramic Society, Columbus, OH, 1964), p. 119 (Fig. 297).Google Scholar
11.Cocco, A. and Massazza, F., Ann. Chim. (Rome) 53, 883 (1963).Google Scholar
12.Phase Diagrams for Ceramists 1969 Supplement, edited by Levin, E.M., Robbins, C.R., and McMurdie, H.F. (American Ceramic Society, Columbus, OH, 1969), p. 93 (Fig. 2334).Google Scholar
13.McCoy, M.A., Grimes, R.W., and Lee, W.E., Philos. Mag. A75, 833 (1997).CrossRefGoogle Scholar
14.Noguera, C., Philos. Mag. Lett. 80, 173 (2000).CrossRefGoogle Scholar
15.Lukaszewicz, K., Rocz. Chem. 33, 239 (1959).Google Scholar
16.McCarthy, G.J., White, W.B., and Roy, R., J. Am. Ceram. Soc. 52, 463 (1969).CrossRefGoogle Scholar
17.Elcombe, M.M., Kisi, E.H., Hawkins, K.D., White, T.J., Goodman, P., and Matheson, S., Acta Crystallogr., Sect. B: Struct. Sci. 47, 305 (1991).CrossRefGoogle Scholar
18.Sugimoto, W., Shirata, M., Takemoto, M., Hayami, S., Sugahara, Y., and Kuroda, K., Solid State Ionics 108, 315 (1998).CrossRefGoogle Scholar
19.Tilley, R.J.D., J. Solid State Chem. 21, 293 (1977).CrossRefGoogle Scholar
20.Kwestroo, W. and Paping, H.A.M., J. Am. Ceram. Soc. 42, 292 (1959).CrossRefGoogle Scholar
21.Hawkins, K. and White, T.J., Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).Google Scholar
22.Pfaff, G., J. Eur. Ceram. Soc. 9, 121 (1992).CrossRefGoogle Scholar
23.Sohn, J-H., Inaguma, Y., Itoh, M., and Nakamura, T., Mater. Sci. Eng. B 41, 50 (1996).CrossRefGoogle Scholar
24.Wise, P.L., Reaney, I.M., Lee, W.E., Price, T.J., Iddles, D.M., and Cannell, D.S., Proceedings of the International Conference on Microwave Materials and Their Applications (MMA 2000) (Bled, Slovenia) (to be published).Google Scholar
25.Reaney, I.M., Wise, P.L., Lee, W.E., Iddles, D.M., Cannell, D.S., and Price, T.J., Proceedings of the 12th IEEE International Symposium on the Applications of Ferroelectrics (ISAF 2000) (Honolulu, Ha-waii) (to be published).Google Scholar
26.McCarthy, G.J., White, W.B., and Roy, R., J. Inorg. Nucl. Chem. 31, 329 (1969).CrossRefGoogle Scholar
27.White, W.B. and Keramidas, V.G., Solid State Chemistry, NBS Spec. Publ. (U.S.) 364, 113 (1972).Google Scholar
28.Schlom, D.G., Jia, Y., Zou, L-N., Haeni, J.H., Briczinski, S., Zurbuchen, M.A., Leitz, C.W., Madhavan, S., Wozniak, S., Liu, Y., Hawley, M.E., Brown, G.W., Dabkowski, A., Dabkowska, H.A., Uecker, R., and Reiche, P., in Superconducting and Related Oxides: Physics and Nanoengineering III, edited by Pavuna, D. and Bozovic, I., SPIE Vol. 3481 (SPIE, Bellingham, WA, 1998), pp. 226240.CrossRefGoogle Scholar
29.Haeni, J.H., Theis, C.D., Schlom, D.G., Tian, W., Pan, X.Q., Chang, H., Takeuchi, I., and Xiang, X.D., Appl. Phys. Lett. 78, 3292 (2001).CrossRefGoogle Scholar
30.Iwazaki, Y., Suzuki, T., Sekiguchi, S., and Fujimoto, M., Jpn. J. Appl. Phys., Part 2 38, L1443 (1999).CrossRefGoogle Scholar
31.Iwazaki, Y., Suzuki, T., Sekiguchi, S., and Fujimoto, M., Jpn. J. Appl. Phys., Part 2 39, L303 (2000).CrossRefGoogle Scholar
32.Tanaka, H. and Kawai, T., Appl. Phys. Lett. 76, 3618 (2000).CrossRefGoogle Scholar
33.Cho, A.Y., Surf. Sci. 17, 494 (1969);CrossRefGoogle Scholar
Cho, A.Y., J. Appl. Phys. 41, 2780 (1970);CrossRefGoogle Scholar
Cho, A.Y., J. Appl. Phys. 42, 2074 (1971).CrossRefGoogle Scholar
34.Gossard, A.C., Petroff, P.M., Weigmann, W., Dingle, R., and Savage, A., Appl. Phys. Lett. 29, 323 (1976).CrossRefGoogle Scholar
35.Sakamoto, T., Funabashi, H., Ohta, K., Nakagawa, T., Kawai, N.J., Kojima, T., and Bando, Y., Superlattices Microstruct. 1, 347 (1985).CrossRefGoogle Scholar
36.Molecular Beam Epitaxy: Applications to Key Materials, edited by Farrow, R.F.C. (Noyes, Park Ridge, NJ, 1995).Google Scholar
37.Schlom, D.G., Marshall, A.F., Sizemore, J.T., Chen, Z.J., Eckstein, J.N., Bozovic, I., von Dessonneck, K.E., Harris, J.S. Jr., and Bravman, J.C., J. Cryst. Growth 102, 361 (1990).CrossRefGoogle Scholar
38.Eckstein, J.N., Bozovic, I., Klausmeier-Brown, M., Virshup, G., and Ralls, K.S., Thin Solid Films 216, 8 (1992).CrossRefGoogle Scholar
39.Brazdeikis, A., Vailionis, A., and Flodstrom, A.S., Physica C 235–240, 711 (1994).CrossRefGoogle Scholar
40.Schlom, D.G. and Harris, J.S. Jr., in Molecular Beam Epitaxy: Ap-plications to Key Materials, edited by Farrow, R.F.C. (Noyes, Park Ridge, NJ, 1995), pp. 505622.CrossRefGoogle Scholar
41. Applied EPI, St.Paul, MN.Google Scholar
42.Schlom, D.G., Theis, C.D., and Hawley, M.E., in Integrated Thin Films and Applications, edited by Pandey, R.K., Witter, D.E., and Varshney, U. (American Ceramic Society, Westerville, OH, 1998), Vol. 86, pp. 4160.Google Scholar
43. Aldrich Chemical Company, Inc., Milwaukee, WI.Google Scholar
44. Varian Vacuum Products, Lexington, MA.Google Scholar
45.Theis, C.D. and Schlom, D.G., J. Vac. Sci. Technol. A 14, 2677 (1996).CrossRefGoogle Scholar
46.Haeni, J.H., Theis, C.D., and Schlom, D.G., J. Electroceram. 4, 399 (2000).CrossRefGoogle Scholar
47. ATOMICAS, Intelligent Sensor Technology, Mountain View, CA.Google Scholar
48.Stadelmann, P.A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
49.Möbus, G. and Rühle, M., Ultramicroscopy 56, 54 (1994).CrossRefGoogle Scholar
50.Kingand, W.E., Campbell, G.H., Ultramicroscopy 56, 46 (1994).Google Scholar
51.Williams, T., Lichtenberg, F., Reller, A., and Bednorz, G., Mater. Res. Bull. 26, 763 (1991).CrossRefGoogle Scholar
52.Sloan, J., Battle, P.D., Green, M.A., Rosseinsky, M.J., and Vente, J.F., J. Solid State Chem. 138, 135 (1998).CrossRefGoogle Scholar
53.Seshadri, R., Hervieu, M., Martin, C., Maignan, A., Domenges, B., Raveau, B., and Fitch, A.N., Chem. Mater. 9, 1778 (1997).CrossRefGoogle Scholar
54.Drennan, J., Tavares, C.P., and Steele, B.C.H., Mater. Res. Bull. 17, 621 (1982).CrossRefGoogle Scholar
55.Mohan Ram, R.A., Ganapathi, L., Ganguly, P., and Rao, C.N.R., J. Solid State Chem. 63, 139 (1986).Google Scholar
56.Fu, W.T., Zandbergen, H.W., Xu, Q., van Ruitenbeek, J.M., de Jongh, L.J., and van Tendeloo, G., Solid State Commun. 70, 1117 (1989).CrossRefGoogle Scholar
57.Veblen, D.R., Am. Mineral. 76, 801 (1991).Google Scholar
58.Nozaki, A., Yoshikawa, H., Wada, T., Yamauchi, H., and Tanaka, S., Phys. Rev. B 43, 181 (1991).CrossRefGoogle Scholar
59.Čeh, M., Kraševec, V., and Kolar, D., J. Solid State Chem. 103, 263 (1993).CrossRefGoogle Scholar
60.Adachi, S., Yamauchi, H., Tanaka, S., and Müri, N., Physica C 212, 164 (1993)CrossRefGoogle Scholar
61.Hiroi, Z., Takano, M., Azuma, M., and Takeda, Y., Nature 364, 315 (1993).CrossRefGoogle Scholar
62.Laffez, P., Van Tendeloo, G., Seshadri, R., Hervieu, M., Martin, C., Maignan, A., and Raveau, B., J. Appl. Phys. 80, 5850 (1996).CrossRefGoogle Scholar
63.Bader, S.D., Osgood, R.M. III, Miller, D.J., Mitchell, J.F., and Jiang, J.S., J. Appl. Phys. 83, 6385 (1998).CrossRefGoogle Scholar
64.Rao, C.N.R. and Raveau, B., Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd ed. (Wiley-VCH, New York, 1998), pp. 6174.Google Scholar
65.Szot, K. and Speier, W., Phys. Rev. B 60, 5909 (1999).CrossRefGoogle Scholar
66.Udayakumar, K.R. and Cormack, A.N., J. Am. Ceram. Soc. 71, C469 (1988).CrossRefGoogle Scholar
67.Barin, I., Thermochemical Properties of Pure Substances, 3rd ed. (VCH, Weinheim, Germany, 1995), Vol. 2.CrossRefGoogle Scholar
68.Thompson, J.B. Jr., in Structure and Bonding in Crystals, edited by O’Keeffe, M. and Navrotsky, A. (Academic Press, New York, 1981), Vol. 2, Chap. 22, pp. 167196.CrossRefGoogle Scholar
69.Dickerson, R.E., Molecular Thermodynamics (Benjamin/ Cummings, Menlo Park, CA, 1969), pp. 5152.Google Scholar
70.Lupis, C.H.P., Chemical Thermodynamics of Materials (Elsevier, New York, 1983), pp. 6768, 196–200.Google Scholar
71.DeHoff, R.T., Thermodynamics in Materials Science (McGraw-Hill, New York, 1993), pp. 248261.Google Scholar