Skip to main content
×
Home
    • Aa
    • Aa

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition

  • Michael Lorenz (a1), Haoming Wei (a1), Florian Jung (a1), Stefan Hohenberger (a1), Holger Hochmuth (a1), Marius Grundmann (a1), Christian Patzig (a2), Susanne Selle (a2) and Thomas Höche (a2)...
Abstract
Abstract

Pulsed laser deposition is one of the most flexible growth methods for high-quality epitaxial multifunctional thin films and short-period superlattices. The following examples of current research interest demonstrate the state-of-the art: First, it is shown that the magnetoelectric performance of multiferroic BiFeO3–BaTiO3 (001)-oriented superlattices depends on the crystalline coherence of the different layers at the interfaces. Second, it is exemplified that dielectric-plasmonic superlattices built from the electrically insulating oxide MgO and the metallically conducting nitride TiN are promising metamaterials with hyperbolic dispersion. As a third example, it is demonstrated that LaNiO3- and LaMnO3-based superlattices with (001)-, (011)-, and (111)-out-of-plane orientation and controlled single layer thickness from 2 to 15 atomic monolayers show metal-insulator transitions and tunable gaps, in partial agreement with density functional theory calculations. Underlined by these examples, it is shown that the precise control of an epitaxially coherent, or two-dimensional layer-by-layer growth, named after Jan van der Merwe, is a prerequisite to achieve the desired functionality of oxide–oxide and oxide–nitride superlattices.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: mlorenz@physik.uni-leipzig.de
Footnotes
Hide All

Contributing Editor: Mmantsae Diale

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Mannhart and D.G. Schlom : Oxide interfaces—An opportunity for electronics. Science 327, 1607 (2010).

M. Lorenz , M.S. Ramachandra Rao , T. Venkatesan , E. Fortunato , P. Barquinha , R. Branquinho , D. Salgueiro , R. Martins , E. Carlos , A. Liu , F.K. Shan , M. Grundmann , H. Boschker , J. Mukherjee , M. Priyadarshini , N. DasGupta , D.J. Rogers , F.H. Teherani , E.V. Sandana , P. Bove , K. Rietwyk , A. Zaban , A. Veziridis , A. Weidenkaff , M. Muralidhar , M. Murakami , S. Abel , J. Fompeyrine , J. Zuniga-Perez , R. Ramesh , N.A. Spaldin , S. Ostanin , V. Borisov , I. Mertig , V. Lazenka , G. Srinivasan , W. Prellier , M. Uchida , M. Kawasaki , R. Pentcheva , P. Gegenwart , F. Miletto Granozio , J. Fontcuberta , and N. Pryds : The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 49, 433001 (2016).

M. Lorenz , M. Brandt , G. Wagner , H. Hochmuth , G. Zimmermann , H. von Wenckstern , and M. Grundmann : MgZnO:P homoepitaxy by pulsed laser deposition: Pseudomorphic layer-by-layer growth and high electron mobility. Proc. SPIE 7217, 72170N (2009).

M. Lorenz and M.S. Ramachandra Rao : Preface to special issue “25 years of pulsed laser deposition”. J. Phys. D: Appl. Phys. 47, 030301 (2014); see also following articles.

M. Lorenz : Pulsed laser deposition of ZnO-based thin films, chapter 7. In Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, K. Ellmer , A. Klein , and B. Rech , eds.; Springer Series in Materials Science, Vol. 104 (Springer, Berlin, 2008); p. 303.

H. von Wenckstern , H. Schmidt , C. Hanisch , M. Brandt , C. Czekalla , G. Benndorf , G. Biehne , A. Rahm , H. Hochmuth , M. Lorenz , and M. Grundmann : Homoepitaxy of ZnO by pulsed-laser deposition. Phys. Status Solidi RRL 1, 129 (2007).

A. Tsukazaki , A. Ohtomo , T. Onuma , M. Ohtani , T. Makino , M. Sumiya , K. Ohtani , S.F. Chichibu , S. Fuke , Y. Segawa , H. Ohno , H. Koinuma , and M. Kawasaki : Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005).

M. Karger and M. Schilling : Epitaxial properties of Al-doped ZnO thin films grown by pulsed laser deposition on SrTiO3(001). Phys. Rev. B 71, 075304 (2005).

J. Zippel , M. Lorenz , G. Benndorf , and M. Grundmann : Persistent layer-by-layer growth for pulsed-laser homoepitaxy of (0001) ZnO. Phys. Status Solidi RRL 6, 433 (2012).

G. Koster , G.J.H.M. Rijnders , D.H.A. Blank , and H. Rogalla : Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729 (1999).

M. Lorenz , V. Lazenka , P. Schwinkendorf , F. Bern , M. Ziese , H. Modarresi , A. Volodin , M.J. Van Bael , K. Temst , A. Vantomme , and M. Grundmann : Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D: Appl. Phys. 47, 135303 (2014).

M. Lorenz , G. Wagner , V. Lazenka , P. Schwinkendorf , H. Modarresi , M.J. Van Bael , A. Vantomme , K. Temst , O. Oeckler , and M. Grundmann : Correlation of magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015).

M. Lorenz , V. Lazenka , P. Schwinkendorf , M.J. Van Bael , A. Vantomme , K. Temst , M. Grundmann , and T. Höche : Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv. Mater. Interfaces 3, 1500822 (2016).

V. Lazenka , M. Lorenz , H. Modarresi , M. Bisht , R. Rüffer , M. Bonholzer , M. Grundmann , M.J. Van Bael , A. Vantomme , and K. Temst : Magnetic spin structure and magnetoelectric coupling in BiFeO3–BaTiO3 multilayer. Appl. Phys. Lett. 106, 082904 (2015).

C.A.F. Vaz , J. Hoffman , C.H. Ahn , and R. Ramesh : Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).

J. Ma , J. Hu , Z. Li , and C-W. Nan : Recent progress in multiferroic magnetoelectric composites: From bulk to thin film. Adv. Mater. 23, 1062 (2011).

N. Feng , W. Mi , X. Wang , Y. Cheng , and U. Schwingenschlögl : Superior properties of energetically stable La2/3Sr1/3MnO3/tetragonal BiFeO3 multiferroic superlattices. ACS Appl. Mater. Interfaces 7, 10612 (2015).

R. Gupta , S. Chaudhary , and R.K. Kotnala : Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces 7, 8472 (2015).

R.K. Kotnala , R. Gupta , and S. Chaudhary : Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl. Phys. Lett. 107, 082908 (2015).

A.F. Popkov , M.D. Davydova , K.A. Zvezdin , S.V. Solov’yov , and A.K. Zvezdin : Origin of the giant linear magnetoelectric effect in perovskitelike multiferroic BiFeO3 . Phys. Rev. B 93, 094435 (2016).

M. Lorenz , A. de Pablos-Martin , C. Patzig , M. Stölzel , K. Brachwitz , H. Hochmuth , M. Grundmann , and T. Höche : Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating. J. Phys. D: Appl. Phys. 47, 034013 (2014).

P. Hansmann , X.P. Yang , A. Toschi , G. Khaliullin , O.K. Andersen , and K. Held : Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).

D. Doennig , W.E. Pickett , and R. Pentcheva : Confinement-driven transitions between topological and Mott phases in (LaNiO3) N /(LaAlO3) M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).

D. Doennig , S. Baidya , W.E. Pickett , and R. Pentcheva : Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).

H.M. Wei , M. Jenderka , M. Bonholzer , M. Grundmann , and M. Lorenz : Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (001) superlattices. Appl. Phys. Lett. 106, 042103 (2015).

H.M. Wei , M. Grundmann , and M. Lorenz : Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. Appl. Phys. Lett. 109, 082108 (2016).

H.M. Wei , J.L. Barzola-Quiquia , C. Yang , C. Patzig , T. Höche , P. Esquinazi , M. Grundmann , and M. Lorenz : Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices. Appl. Phys. Lett. 110, 102403 (2017).

J. Sass , K. Mazur , B. Surma , F. Eichhorn , D. Litwin , J. Galas , and S. Sitarek : X-ray studies of ultra-thin Si wafers for mirror application. Nucl. Instrum. Methods Phys. Res., Sect. B 253, 236 (2006).

M. Kawasaki , A. Ohtomo , T. Arakane , K. Takahashi , M. Yoshimoto , and H. Koinuma : Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides. Appl. Surf. Sci. 107, 102 (1996).

G. Koster , G. Rijnders , D.H.A. Blank , and H. Rogalla : Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000).

M. Bonholzer , M. Lorenz , and M. Grundmann : TiN layer-by-layer growth of TiN by pulsed laser deposition on in situ annealed (100) MgO substrates. Phys. Status Solidi A 211, 2621 (2014).

M. Lorenz , H. Hochmuth , C. Grüner , H. Hilmer , A. Lajn , D. Spemann , M. Brandt , J. Zippel , R. Schmidt-Grund , H. von Wenckstern , and M. Grundmann : Oxide thin film heterostructures on large area, with flexible doping, low dislocation density, and abrupt interfaces: Grown by pulsed laser deposition. Laser Chem. 2010, 140976 (2010).

Th. Höche , J.W. Gerlach , and T. Petsch : Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106, 981 (2006).

M. Lorenz , D. Hirsch , C. Patzig , T. Höche , S. Hohenberger , H. Hochmuth , V. Lazenka , K. Temst , and M. Grundmann : Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl. Mater. Interfaces 9, 1895618965 (2017).

G.V. Naik , J.L. Schroeder , X. Ni , A.V. Kildishev , T.D. Sands , and A. Boltasseva : Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012).

A. Salandrino and N. Engheta : Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).

G.V. Naik , B. Saha , J. Liu , S.M. Saber , E.A. Stach , J.M.K. Irudayaraj , T.D. Sands , V.M. Shalaev , and A. Boltasseva : Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. U. S. A. 111, 7546 (2014).

A.V. Boris , Y. Matiks , E. Benckiser , A. Frano , P. Popovich , V. Hinkov , P. Wochner , M.C. Colin , E. Detemple , V.K. Malik , C. Bernhard , T. Prokscha , A. Suter , Z. Salman , E. Morenzoni , G. Cristiani , H.U. Habermeier , and B. Keimer : Dimensionality control of electronic phase transitions in nickel–oxide superlattices. Science 332, 937 (2011).

M. Gibert , P. Zubko , R. Scherwitzl , J. Íñiguez , and J-M. Triscone : Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195 (2012).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 23rd July 2017. This data will be updated every 24 hours.