Skip to main content

Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition

  • Michael Lorenz (a1), Haoming Wei (a1), Florian Jung (a1), Stefan Hohenberger (a1), Holger Hochmuth (a1), Marius Grundmann (a1), Christian Patzig (a2), Susanne Selle (a2) and Thomas Höche (a2)...

Pulsed laser deposition is one of the most flexible growth methods for high-quality epitaxial multifunctional thin films and short-period superlattices. The following examples of current research interest demonstrate the state-of-the art: First, it is shown that the magnetoelectric performance of multiferroic BiFeO3–BaTiO3 (001)-oriented superlattices depends on the crystalline coherence of the different layers at the interfaces. Second, it is exemplified that dielectric-plasmonic superlattices built from the electrically insulating oxide MgO and the metallically conducting nitride TiN are promising metamaterials with hyperbolic dispersion. As a third example, it is demonstrated that LaNiO3- and LaMnO3-based superlattices with (001)-, (011)-, and (111)-out-of-plane orientation and controlled single layer thickness from 2 to 15 atomic monolayers show metal-insulator transitions and tunable gaps, in partial agreement with density functional theory calculations. Underlined by these examples, it is shown that the precise control of an epitaxially coherent, or two-dimensional layer-by-layer growth, named after Jan van der Merwe, is a prerequisite to achieve the desired functionality of oxide–oxide and oxide–nitride superlattices.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Mmantsae Diale

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Hide All
1. Mannhart J. and Schlom D.G.: Oxide interfaces—An opportunity for electronics. Science 327, 1607 (2010).
2. Lorenz M., Ramachandra Rao M.S., Venkatesan T., Fortunato E., Barquinha P., Branquinho R., Salgueiro D., Martins R., Carlos E., Liu A., Shan F.K., Grundmann M., Boschker H., Mukherjee J., Priyadarshini M., DasGupta N., Rogers D.J., Teherani F.H., Sandana E.V., Bove P., Rietwyk K., Zaban A., Veziridis A., Weidenkaff A., Muralidhar M., Murakami M., Abel S., Fompeyrine J., Zuniga-Perez J., Ramesh R., Spaldin N.A., Ostanin S., Borisov V., Mertig I., Lazenka V., Srinivasan G., Prellier W., Uchida M., Kawasaki M., Pentcheva R., Gegenwart P., Miletto Granozio F., Fontcuberta J., and Pryds N.: The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 49, 433001 (2016).
3. Lorenz M., Brandt M., Wagner G., Hochmuth H., Zimmermann G., von Wenckstern H., and Grundmann M.: MgZnO:P homoepitaxy by pulsed laser deposition: Pseudomorphic layer-by-layer growth and high electron mobility. Proc. SPIE 7217, 72170N (2009).
4. Lorenz M. and Ramachandra Rao M.S.: Preface to special issue “25 years of pulsed laser deposition”. J. Phys. D: Appl. Phys. 47, 030301 (2014); see also following articles.
5. Lorenz M.: Pulsed laser deposition of ZnO-based thin films, chapter 7. In Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, Ellmer K., Klein A., and Rech B., eds.; Springer Series in Materials Science, Vol. 104 (Springer, Berlin, 2008); p. 303.
6. von Wenckstern H., Schmidt H., Hanisch C., Brandt M., Czekalla C., Benndorf G., Biehne G., Rahm A., Hochmuth H., Lorenz M., and Grundmann M.: Homoepitaxy of ZnO by pulsed-laser deposition. Phys. Status Solidi RRL 1, 129 (2007).
7. Tsukazaki A., Ohtomo A., Onuma T., Ohtani M., Makino T., Sumiya M., Ohtani K., Chichibu S.F., Fuke S., Segawa Y., Ohno H., Koinuma H., and Kawasaki M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005).
8. Karger M. and Schilling M.: Epitaxial properties of Al-doped ZnO thin films grown by pulsed laser deposition on SrTiO3(001). Phys. Rev. B 71, 075304 (2005).
9. Zippel J., Lorenz M., Benndorf G., and Grundmann M.: Persistent layer-by-layer growth for pulsed-laser homoepitaxy of (0001) ZnO. Phys. Status Solidi RRL 6, 433 (2012).
10. Koster G., Rijnders G.J.H.M., Blank D.H.A., and Rogalla H.: Imposed layer-by-layer growth by pulsed laser interval deposition. Appl. Phys. Lett. 74, 3729 (1999).
11. Lorenz M., Lazenka V., Schwinkendorf P., Bern F., Ziese M., Modarresi H., Volodin A., Van Bael M.J., Temst K., Vantomme A., and Grundmann M.: Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D: Appl. Phys. 47, 135303 (2014).
12. Lorenz M., Wagner G., Lazenka V., Schwinkendorf P., Modarresi H., Van Bael M.J., Vantomme A., Temst K., Oeckler O., and Grundmann M.: Correlation of magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015).
13. Lorenz M., Lazenka V., Schwinkendorf P., Van Bael M.J., Vantomme A., Temst K., Grundmann M., and Höche T.: Epitaxial coherence at interfaces as origin of high magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices. Adv. Mater. Interfaces 3, 1500822 (2016).
14. Lazenka V., Lorenz M., Modarresi H., Bisht M., Rüffer R., Bonholzer M., Grundmann M., Van Bael M.J., Vantomme A., and Temst K.: Magnetic spin structure and magnetoelectric coupling in BiFeO3–BaTiO3 multilayer. Appl. Phys. Lett. 106, 082904 (2015).
15. Vaz C.A.F., Hoffman J., Ahn C.H., and Ramesh R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).
16. Ma J., Hu J., Li Z., and Nan C-W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin film. Adv. Mater. 23, 1062 (2011).
17. Priya S., Yang S.C., Maurya D., and Yan Y.: Recent advances in piezoelectric and magnetoelectric materials phenomena. In Composite Magnetoelectrics—Materials, Structures and Applications, Srinivasan G., Priya S., and Sun N.X., eds.; Woodhead Publishing Series in Electronic and Optical Materials No. 62 (Elsevier, Amsterdam, 2015); pp. 103157.
18. Feng N., Mi W., Wang X., Cheng Y., and Schwingenschlögl U.: Superior properties of energetically stable La2/3Sr1/3MnO3/tetragonal BiFeO3 multiferroic superlattices. ACS Appl. Mater. Interfaces 7, 10612 (2015).
19. Gupta R., Chaudhary S., and Kotnala R.K.: Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces 7, 8472 (2015).
20. Kotnala R.K., Gupta R., and Chaudhary S.: Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures. Appl. Phys. Lett. 107, 082908 (2015).
21. Popkov A.F., Davydova M.D., Zvezdin K.A., Solov’yov S.V., and Zvezdin A.K.: Origin of the giant linear magnetoelectric effect in perovskitelike multiferroic BiFeO3 . Phys. Rev. B 93, 094435 (2016).
22. Lorenz M., de Pablos-Martin A., Patzig C., Stölzel M., Brachwitz K., Hochmuth H., Grundmann M., and Höche T.: Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating. J. Phys. D: Appl. Phys. 47, 034013 (2014).
23. Hansmann P., Yang X.P., Toschi A., Khaliullin G., Andersen O.K., and Held K.: Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).
24. Doennig D., Pickett W.E., and Pentcheva R.: Confinement-driven transitions between topological and Mott phases in (LaNiO3) N /(LaAlO3) M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).
25. Doennig D., Baidya S., Pickett W.E., and Pentcheva R.: Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).
26. Wei H.M., Jenderka M., Bonholzer M., Grundmann M., and Lorenz M.: Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (001) superlattices. Appl. Phys. Lett. 106, 042103 (2015).
27. Wei H.M., Grundmann M., and Lorenz M.: Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. Appl. Phys. Lett. 109, 082108 (2016).
28. Wei H.M., Barzola-Quiquia J.L., Yang C., Patzig C., Höche T., Esquinazi P., Grundmann M., and Lorenz M.: Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices. Appl. Phys. Lett. 110, 102403 (2017).
29. Sass J., Mazur K., Surma B., Eichhorn F., Litwin D., Galas J., and Sitarek S.: X-ray studies of ultra-thin Si wafers for mirror application. Nucl. Instrum. Methods Phys. Res., Sect. B 253, 236 (2006).
30. Kawasaki M., Ohtomo A., Arakane T., Takahashi K., Yoshimoto M., and Koinuma H.: Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides. Appl. Surf. Sci. 107, 102 (1996).
31. Koster G., Rijnders G., Blank D.H.A., and Rogalla H.: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000).
32. Wei H.M.: Conductivity behavior of LaNiO3- and LaMnO3-based thin film superlattices. Ph.D. thesis, Universität Leipzig, Fakultät für Physik und Geowissenschaften, Leipzig, Germany, 2017.
33. Bonholzer M., Lorenz M., and Grundmann M.: TiN layer-by-layer growth of TiN by pulsed laser deposition on in situ annealed (100) MgO substrates. Phys. Status Solidi A 211, 2621 (2014).
34. Lorenz M., Hochmuth H., Grüner C., Hilmer H., Lajn A., Spemann D., Brandt M., Zippel J., Schmidt-Grund R., von Wenckstern H., and Grundmann M.: Oxide thin film heterostructures on large area, with flexible doping, low dislocation density, and abrupt interfaces: Grown by pulsed laser deposition. Laser Chem. 2010, 140976 (2010).
35. Höche Th., Gerlach J.W., and Petsch T.: Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples. Ultramicroscopy 106, 981 (2006).
36. Lorenz M., Hirsch D., Patzig C., Höche T., Hohenberger S., Hochmuth H., Lazenka V., Temst K., and Grundmann M.: Correlation of interface impurities and chemical gradients with high magnetoelectric coupling strength in multiferroic BiFeO3–BaTiO3 superlattices. ACS Appl. Mater. Interfaces 9, 1895618965 (2017).
37. Naik G.V., Schroeder J.L., Ni X., Kildishev A.V., Sands T.D., and Boltasseva A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2012).
38. Salandrino A. and Engheta N.: Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).
39. Naik G.V., Saha B., Liu J., Saber S.M., Stach E.A., Irudayaraj J.M.K., Sands T.D., Shalaev V.M., and Boltasseva A.: Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. U. S. A. 111, 7546 (2014).
40. Boris A.V., Matiks Y., Benckiser E., Frano A., Popovich P., Hinkov V., Wochner P., Colin M.C., Detemple E., Malik V.K., Bernhard C., Prokscha T., Suter A., Salman Z., Morenzoni E., Cristiani G., Habermeier H.U., and Keimer B.: Dimensionality control of electronic phase transitions in nickel–oxide superlattices. Science 332, 937 (2011).
41. Gibert M., Zubko P., Scherwitzl R., Íñiguez J., and Triscone J-M.: Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 45
Total number of PDF views: 129 *
Loading metrics...

Abstract views

Total abstract views: 513 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 19th January 2018. This data will be updated every 24 hours.