Skip to main content Accessibility help
×
Home

Ultramicroporous silicon nitride ceramics for CO2 capture

  • Cristina Schitco (a1), Mahdi Seifollahi Bazarjani (a2), Ralf Riedel (a3) and Aleksander Gurlo (a4)

Abstract

Carbon dioxide (CO2) capture is regarded as one of the biggest challenges of the 21st century; therefore, intense research effort has been dedicated in the area of developing new materials for efficient CO2 capture. Here, we report high CO2 capture capacity in the low region of applied CO2 pressures observed with ultramicroporous silicon nitride-based material. The latter is synthesized by a facile one-step NH3-assisted thermolysis of a polysilazane. Our newly developed material for CO2 capture has the following outstanding properties: (i) one of the highest CO2 capture capacities per surface area of micropores, with a CO2 uptake of 2.35 mmol g−1 at 273 K and 1 bar (ii) a low isosteric heat of adsorption (27.6 kJ mol−1), which is independent from the fractional surface coverage of CO2. Furthermore, we demonstrate that the pore size plays a crucial role in elevating the CO2 adsorption capacity, surpassing the effect of Brunauer–Emmett–Teller specific surface area.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: schitco@materials.tu-darmstadt.de

References

Hide All
1. Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2(2), 148 (2009).
2. D'Alessandro, D.M., Smit, B., and Long, J.R.: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49(35), 6058 (2010).
3. Liang, Z., Marshall, M., and Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5), 2785 (2009).
4. Morris, R.E. and Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem., Int. Ed. 47(27), 4966 (2008).
5. Agency, I.E.: Prospects for Carbon Dioxide Capture and Storage (International Energy Agency, Organisation for Economic Cooperation and Development, Paris, 2004).
6. Granite, E.J. and Pennline, H.W.: Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41(22), 5470 (2002).
7. Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., and Muller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 . Energy Environ. Sci. 5(6), 7281 (2012).
8. Kohl, A.L. and Nielsen, R.: Gas Purification (Gulf Pub., Houston, 1997).
9. Hunt, A.J., Sin, E.H.K., Marriott, R., and Clark, J.H.: Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3(3), 306 (2010).
10. Sayari, A. and Belmabkhout, Y.: Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. J. Am. Chem. Soc. 132(18), 6312 (2010).
11. Yang, H.W., Khan, A.M., Yuan, Y.Z., and Tsang, S.C.: Mesoporous silicon nitride for reversible CO2 capture. Chem. Asian J. 7(3), 498 (2012).
12. Jadhav, P.D., Chatti, R.V., Biniwale, R.B., Labhsetwar, N.K., Devotta, S., and Rayalu, S.S.: Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21(6), 3555 (2007).
13. Caskey, S.R., Wong-Foy, A.G., and Matzger, A.J.: Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130(33), 10870 (2008).
14. Khatri, R.A., Chuang, S.S.C., Soong, Y., and Gray, M.: Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20(4), 1514 (2006).
15. Satyapal, S., Filburn, T., Trela, J., and Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 15(2), 250 (2001).
16. Hutson, N.D., Speakman, S.A., and Payzant, E.A.: Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem. Mater. 16(21), 4135 (2004).
17. Ochoa-Fernández, E., Rønning, M., Grande, T., and Chen, D.: Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chem. Mater. 18(25), 6037 (2006).
18. Nugent, P., Belmabkhout, Y., Burd, S.D., Cairns, A.J., Luebke, R., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., and Zaworotko, M.J.: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439), 80 (2013).
19. Merel, J., Clausse, M., and Meunier, F.: Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 47(1), 209 (2008).
20. Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., and Pis, J.J.: CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86(14), 2204 (2007).
21. Kintisch, E.: Power generation - Making dirty coal plants cleaner. Science 317(5835), 184 (2007).
22. Himeno, S., Komatsu, T., and Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50(2), 369 (2005).
23. Hyun, S.H. and Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon-dioxide, and their binary-mixtures on 13X molecular-sieves. J. Chem. Eng. Data 27(2), 196 (1982).
24. Thote, J.A., Iyer, K.S., Chatti, R., Labhsetwar, N.K., Biniwale, R.B., and Rayalu, S.S.: In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48(2), 396 (2010).
25. Li, Q., Yang, J., Feng, D., Wu, Z., Wu, Q., Park, S.S., Ha, C-S., and Zhao, D.: Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 3(9), 632 (2010).
26. Jalilov, A.S., Ruan, G., Hwang, C.C., Schipper, D.E., Tour, J.J., Li, Y., Fei, H., Samuel, E.L., and Tour, J.M.: Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. ACS Appl. Mater. Interfaces 7(2), 1376 (2015).
27. Seifollahi Bazarjani, M., Kleebe, H-J., Müller, M.M., Fasel, C., Baghaie Yazdi, M., Gurlo, A., and Riedel, R.: Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem. Mater. 23(18), 4112 (2011).
28. Bazarjani, M.S., Muller, M.M., Kleebe, H-J., Fasel, C., Riedel, R., and Gurlo, A.: In situ formation of tungsten oxycarbide, tungsten carbide and tungsten nitride nanoparticles in micro- and mesoporous polymer-derived ceramics. J. Mater. Chem. A 2(27), 10454 (2014).
29. Colombo, P.: Engineering porosity in polymer-derived ceramics. J. Eur. Ceram. Soc. 28(7), 1389 (2008).
30. Schmidt, H., Koch, D., Grathwohl, G., and Colombo, P.: Micro-/macroporous ceramics from preceramic precursors. J. Am. Ceram. Soc. 84(10), 2252 (2001).
31. Wilhelm, M., Soltmann, C., Koch, D., and Grathwohl, G.: Ceramers - Functional materials for adsorption techniques. J. Eur. Ceram. Soc. 25(2–3), 271 (2005).
32. Bradley, J.S., Vollmer, O., Rovai, R., Specht, U., and Lefebvre, F.: High surface area silicon imidonitrides: A new class of microporous solid base. Adv. Mater. 10(12), 938 (1998).
33. Miyajima, K., Eda, T., Ohta, H., Ando, Y., Nagaya, S., Ohba, T., and Iwamoto, Y.: Development of Si-N based hydrogen separation membrane. In Advances in Polymer Derived Ceramics and Composites. (John Wiley & Sons, Hoboken, NJ, 2010); p. 87.
34. Schitco, C., Bazarjani, M.S., Riedel, R., and Gurlo, A.: NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: A combined N2 and CO2 adsorption and small angle X-ray scattering study. J. Mater. Chem. A 3(2), 805 (2015).
35. Toth, J.: Adsorption Theory, Modeling and Analysis (Marcel Dekker, New York, 2002).
36. Kaneko, K.: Determination of pore-size and pore-size distribution: 1. Adsorbents and catalysts. J. Membr. Sci. 96(1–2), 59 (1994).
37. Uemura, K., Maeda, A., Maji, T.K., Kanoo, P., and Kita, H.: Syntheses, crystal structures and adsorption properties of ultramicroporous coordination polymers constructed from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2009(16), 2329 (2009).
38. Forrest, K.A., Pham, T., Hogan, A., McLaughlin, K., Tudor, B., Nugent, P., Burd, S.D., Mullen, A., Cioce, C.R., Wojtas, L., Zaworotko, M.J., and Space, B.: Computational studies of CO2 sorption and separation in an ultramicroporous metal-organic material. J. Phys. Chem. C 117(34), 17687 (2013).
39. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603 (1985).
40. Williams, H.M., Dawson, E.A., Barnes, P.A., Rand, B., Brydson, R.M.D., and Brough, A.R.: High temperature ceramics for use in membrane reactors: The development of microporosity during the pyrolysis of polycarbosilanes. J. Mater. Chem. 12(12), 3754 (2002).
41. Cazorla-Amorós, D., Alcañiz-Monge, J., and Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820 (1996).
42. Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059 (2010).
43. Jagiello, J. and Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42(7), 1227 (2004).
44. Zhang, C., Song, W., Sun, G., Xie, L., Wang, J., Li, K., Sun, C., Liu, H., Snape, C.E., and Drage, T.: CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27(8), 4818 (2013).

Keywords

Type Description Title
WORD
Supplementary materials

Schitco supplementary material S1
Supplementary Material

 Word (76 KB)
76 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed