Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T12:31:51.128Z Has data issue: false hasContentIssue false

YBa2Cu3O6+δ microcrystals by extraction of a nonstoichiometric melt

Published online by Cambridge University Press:  31 January 2011

N. Pellerin
Affiliation:
Centre de Recherches sur la Physique des Hautes Températures, C.N.R.S., 45071 Orleans Cedex, France
M. Gervais
Affiliation:
Centre de Recherches sur la Physique des Hautes Températures, C.N.R.S., 45071 Orleans Cedex, France
P. Odier
Affiliation:
Centre de Recherches sur la Physique des Hautes Températures, C.N.R.S., 45071 Orleans Cedex, France
Get access

Abstract

YBa2Cu3O6+δ microcrystals are synthesized by extraction of a nonstoichiometric melt similar to that employed for crystal growth of this compound. This method uses, first, initial compositions corresponding to the field YBa2Cu3O6+δ plus liquid, and second, the interaction properties of the flux with an appropriate substrate, i.e., Y2O3. Using other substrates like alumina produces 123 microcrystals, but embedded in the residual flux; in contrast yttrium oxide reacts with this one, and it is essential for its extraction. Choosing proper conditions makes it possible to obtain relatively pure YBa2Cu3O6+δ samples made of regular pellets (size: 10 to 20 μm thickness: 3 to 6 μm). The process is discussed using the phase diagram and the concept of dissolution-reprecipitation often involved in liquid phase sintering.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hor, P.H., Huang, Z.J., Gao, L., Meng, R.L., Xue, Y.Y., Chu, C.W., Jean, Y. C., and Farmer, J., Modern Phys. Lett. B 4 (11), 703 (1990).CrossRefGoogle Scholar
2.Kuwabara, M. and Shimooka, H., Appl. Phys. Lett. 55 (26), 2781 (1989).CrossRefGoogle Scholar
3.Smith, D.S., Suasmoro, S., Huger, M., and Gault, C., “Microcracking in Polycrystalline YBa2Cu3O7−x”, ICMC'90, Garmisch-Partenkirchen, RFA.Google Scholar
4.Smith, D. S., Suasmoro, S., and Gault, C., J. Eur. Ceram. Soc. 5, 81 (1989).CrossRefGoogle Scholar
5.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
6.Babcock, S. E. and Larbalestier, D. C., Appl. Phys. Lett. 55 (4),393 (1989).CrossRefGoogle Scholar
7.Heintz, J. M., Sanz, M., Marquestaut, E., Etourneau, J., and Bonnet, J. P., “Influence of BaCuO2 on the sintering and the properties of YBa2Cu3O7_δ based ceramics”, J. Am. Ceram. Soc. 74 (5), 998 (1991).CrossRefGoogle Scholar
8.Pruss, N., Kraak, W., Miiller, H.U., Jacobi, A., Dwelk, H., and Herrmann, R., Phys. Status Solidi (a) 116, 793 (1989).CrossRefGoogle Scholar
9.Wolf, Th., Goldacker, W., and Obst, B., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
10.Scheel, H. J., J. Less-Common Met. 151, 199 (1989).CrossRefGoogle Scholar
11.Gervais, M., Odier, P., and Coutures, J. P., Mater. Sci. Eng. B8, 287 (1991).CrossRefGoogle Scholar
12.Odier, P., Dubois, B., Gervais, M., and Douy, A., Mater. Res. Bull. XXIV, 11 (1989).CrossRefGoogle Scholar
13.Roth, R. S., Davis, K. L., and Dennis, J. R., Adv. Ceram. Mater. 2 (3B), 303 (1987), special issue.CrossRefGoogle Scholar
14.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
15.Lee, B-J. and Lee, D.N., J. Am. Ceram. Soc. 74 (1), 78 (1991).CrossRefGoogle Scholar
16.Petzow, G., Kaysser, W. A., and Amtenbrink, M., in Science of Ceramics, edited by Hausner, H. (Deutsche Keramische Gesellschaft, Berlin, 1980), Vol. 10, pp. 269278.Google Scholar
17.Douy, A. and Odier, P., Mater. Res. Bull. XXIV, 1119 (1989).CrossRefGoogle Scholar
18.Massiot, D., Simulation numérique de spectres, private communication.Google Scholar
19.Underwood, E. E., in Quantitative Microscopy, edted by de Hoff, R. T. (McGraw-Hill, New York, 1968), Chap. 4.Google Scholar
20.Dembinski, K., Gervais, M., Odier, P., and Coutures, J. P., J. Less-Common Met. 164&165, 177 (1990).CrossRefGoogle Scholar
21.Clarke, D.R., Shaw, T.M., and Dimos, D., J. Am. Ceram. Soc. 72 (7), 1103 (1989).CrossRefGoogle Scholar
22.Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).CrossRefGoogle Scholar
23.Zhou, Ji-Ping, Sorrell, C. C., Bourdillon, A.J., and Dou, Shi-Xue, J. Am. Ceram. Soc. 73 (7), 2147 (1990).CrossRefGoogle Scholar
24.Pellerin, N., Gervais, M., and Odier, P., to be published.Google Scholar
25.Lay, K.W. and Renlund, G.M., J. Am. Ceram. Soc. 73 (5), 1208 (1990).CrossRefGoogle Scholar
26.Holtzberg, F. and Feild, C., Eur. J. Solid State Inorg. Chem. 27, 107 (1990).Google Scholar
27.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (J. Wiley & Sons, New York, 1976).Google Scholar
28.Ayyub, P. and Multani, M. S., Mater. Lett. 10 (9,10), 431 (1991).CrossRefGoogle Scholar