Skip to main content Accessibility help
×
Home

Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation

  • Peyman Mosberian-Tanha (a1), Margareth Øverland (a1), Thor Landsverk (a2), Felipe E. Reveco (a1), Johan W. Schrama (a3), Andries J. Roem (a3), Jane W. Agger (a4) and Liv T. Mydland (a1)...

Abstract

The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: L. T. Mydland, email liv.mydland@nmbu.no

References

Hide All
1. Naylor, R, Hardy, R, Bureau, D, et al. (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106, 1510315110.
2. Gatlin, DM, Barrows, FT, Brown, P, et al. (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38, 551579.
3. Francis, G, Makkar, HPS & Becker, K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197227.
4. Krogdahl, Å, Penn, M, Thorsen, J, et al. (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult Res 41, 333344.
5. Sahlmann, C, Sutherland, BJG, Kortner, TM, et al. (2013) Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol 34, 599609.
6. Krogdahl, Å, Bakke-McKellep, A & Baeverfjord, G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquacult Nutr 9, 361371.
7. Baeverfjord, G & Krogdahl, A (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19, 375387.
8. Penn, MH, Bendiksen, , Campbell, P, et al. (2011) High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture 310, 267273.
9. Chikwati, EM, Sahlmann, C, Holm, H, et al. (2013) Alterations in digestive enzyme activities during the development of diet-induced enteritis in Atlantic salmon, Salmo salar L. Aquaculture 402–403, 2837.
10. Rogler, G & Rosano, G (2014) The heart and the gut. Eur Heart J 35, 426430.
11. Shen, L, Su, L & Turner, JR (2009) Mechanisms and functional implications of intestinal barrier defects. Dig Dis 27, 443449.
12. Suzuki, T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70, 631659.
13. Arrieta, MC, Bistritz, L & Meddings, JB (2006) Alterations in intestinal permeability. Gut 55, 15121520.
14. Grootjans, J, Thuijls, G, Verdam, F, et al. (2010) Non-invasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg 2, 6169.
15. Knudsen, D, Jutfelt, F, Sundh, H, et al. (2008) Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br J Nutr 100, 120129.
16. Sanchez de Medina, F, Romero-Calvo, I, Mascaraque, C, et al. (2014) Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 20, 23942404.
17. Prager, M, Durmus, T, Buttner, J, et al. (2014) Myosin IXb variants and their pivotal role in maintaining the intestinal barrier: a study in Crohn's disease. Scand J Gastroenterol 49, 11911200.
18. van Wijck, K, Verlinden, TJM, van Eijk, HMH, et al. (2013) Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin Nutr 32, 245251.
19. DeMeo, MT, Mutlu, EA, Keshavarzian, A, et al. (2002) Intestinal permeation and gastrointestinal disease. J Clin Gastroenterol 34, 385396.
20. Cox, MA, Lewis, KO & Cooper, BT (1999) Measurement of small intestinal permeability markers, lactulose, and mannitol in serum – results in celiac disease. Dig Dis Sci 44, 402406.
21. Mankertz, J & Schulzke, JD (2007) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 23, 379383.
22. Redl, H, Bahrami, S, Schlag, G, et al. (1993) Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187, 330345.
23. Guidet, B, Barakett, V, Vassal, T, et al. (1994) Endotoxemia and bacteremia in patients with sepsis syndrome in the intensive care unit. Chest 106, 11941201.
24. Hurley, JC (1995) Endotoxemia: methods of detection and clinical correlates. Clin Microbiol Rev 8, 268292.
25. Jin, W, Wang, H, Ji, Y, et al. (2008) Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine 44, 135140.
26. Luan, Z-G, Zhang, H, Ma, X-C, et al. (2010) Role of high-mobility group box 1 protein in the pathogenesis of intestinal barrier injury in rats with severe acute pancreatitis. Pancreas 39, 216223.
27. Qiao, Z, Li, ZL, Li, JY, et al. (2009) Bacterial translocation and change in intestinal permeability in patients after abdominal surgery. J Huazhong Univ Sci Technolog Med Sci 29, 486491.
28. Szalay, L, Umar, F, Khadem, A, et al. (2003) Increased plasma d-lactate is associated with the severity of hemorrhagic/traumatic shock in rats. Shock 20, 245250.
29. Wang, LK, Wang, LW, Li, X, et al. (2013) Ethyl pyruvate prevents inflammatory factors release and decreases intestinal permeability in rats with d-galactosamine-induced acute liver failure. Hepatobiliary Pancreat Dis Int 12, 180188.
30. Poeze, M, Froon, AHM, Greve, JWM, et al. (1998) d-Lactate as an early marker of intestinal ischaemia after ruptured abdominal aortic aneurysm repair. Br J Surg 85, 12211224.
31. Schoeffel, U, Pelz, K, Haring, RU, et al. (2000) Inflammatory consequences of the translocation of bacteria and endotoxin to mesenteric lymph nodes. Am J Surg 180, 6572.
32. Ammori, BJ, Fitzgerald, P, Hawkey, P, et al. (2003) The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation: molecular investigation of microbial DNA in the blood. Pancreas 26, 1822.
33. Frances, R, Benlloch, S, Zapater, P, et al. (2004) A sequential study of serum bacterial DNA in patients with advanced cirrhosis and ascites. Hepatology 39, 484491.
34. Kane, TD, Alexander, JW & Johannigman, JA (1998) The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg 227, 19.
35. Tipsmark, CK & Madsen, SS (2012) Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation. Comp Biochem Physiol Part A Mol Integr Physiol 162, 378385.
36. Syakuri, H, Adamek, M, Brogden, G, et al. (2013) Intestinal barrier of carp (Cyprinus carpio L.) during a cyprinid herpes virus 3-infection: molecular identification and regulation of the mRNA expression of claudin encoding genes. Fish Shellfish Immunol 34, 305314.
37. Olsen, RE, Sundell, K, Mayhew, TM, et al. (2005) Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 250, 480495.
38. Sundh, H, Kvamme, BO, Fridell, F, et al. (2010) Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator. BMC Physiol 10, 22.
39. Johnson, IT, Gee, JM, Price, K, et al. (1986) Influence of saponins on gut permeability and active nutrient transport in vitro . J Nutr 116, 22702277.
40. Merrifield, DL, Dimitroglou, A, Bradley, G, et al. (2009) Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 32, 755766.
41. Øverland, M, Karlsson, A, Mydland, LT, et al. (2013) Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 402–403, 17.
42. Romarheim, OH, Skrede, A, Gao, Y, et al. (2006) Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss). Aquaculture 256, 354364.
43. Collins, SA, Desai, AR, Mansfield, GS, et al. (2012) The effect of increasing inclusion rates of soybean, pea and canola meals and their protein concentrates on the growth of rainbow trout: concepts in diet formulation and experimental design for ingredient evaluation. Aquaculture 344–349, 9099.
44. Heikkinen, J, Vielma, J, Kemiläinen, O, et al. (2006) Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 261, 259268.
45. Refstie, S, Korsøen, ØJ, Storebakken, T, et al. (2000) Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190, 4963.
46. Lee, KK & Yum, KS (2012) Association of endotoxins and colon polyp: a case–control study. J Korean Med Sci 27, 10621065.
47. Guzman-de la Garza, FJ, Ibarra-Hernandez, JM, Cordero-Perez, P, et al. (2013) Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion. Clinics 68, 10341038.
48. Sedman, PC, Macfie, J, Sagar, P, et al. (1994) The prevalence of gut translocation in humans. Gastroenterology 107, 643649.
49. Balzan, S, De Almeida Quadros, C, De Cleva, R, et al. (2007) Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 22, 464471.
50. Berg, RD & Garlington, AW (1979) Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 23, 403411.
51. Ringø, E, Myklebust, R, Mayhew, TM, et al. (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268, 251264.
52. O'Boyle, CJ, MacFie, J, Mitchell, CJ, et al. (1998) Microbiology of bacterial translocation in humans. Gut 42, 2935.
53. Van Nieuwenhoven, MA, Geerling, BJ, Deutz, NEP, et al. (1999) The sensitivity of the lactulose/rhamnose gut permeability test. Eur J Clin Invest 29, 160165.
54. Bjarnason, I, Macpherson, A & Hollander, D (1995) Intestinal permeability: an overview. Gastroenterology 108, 15661581.
55. Sun, XQ, Fu, XB, Zhang, R, et al. (2001) Relationship between plasma d-lactate and intestinal damage after severe injuries in rats. World J Gastroenterol 7, 555558.
56. Assadian, A, Assadian, O, Senekowitsch, C, et al. (2006) Plasma d-lactate as a potential early marker for colon ischaemia after open aortic reconstruction. Eur J Vasc Endovasc Surg 31, 470474.
57. Zhao, Y, Qin, G, Sun, Z, et al. (2011) Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets. Int J Mol Sci 12, 85028512.
58. Dahhak, S, Uhlen, S, Mention, K, et al. (2008) d-Lactic acidosis in a child with short bowel syndrome [article in French]. Arch Pediatr 15, 145148.
59. Hove, H & Mortensen, P (1995) Colonic lactate metabolism and d-lactic acidosis. Dig Dis Sci 40, 320330.

Keywords

Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation

  • Peyman Mosberian-Tanha (a1), Margareth Øverland (a1), Thor Landsverk (a2), Felipe E. Reveco (a1), Johan W. Schrama (a3), Andries J. Roem (a3), Jane W. Agger (a4) and Liv T. Mydland (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed