Skip to main content Accesibility Help

Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers

  • Catherine Tsang (a1), Nacer F. Smail (a1), S. Almoosawi (a1), I. Davidson (a1) and Emad A. S. Al-Dujaili (a1)...

Pomegranate juice (PJ; also known as pomegreat pure juice) provides a rich and varied source of polyphenolic compounds that may offer cardioprotective, anti-atherogenic and antihypertensive effects. The aim of this study was to investigate the effect of PJ consumption on glucocorticoids levels, blood pressure (BP) and insulin resistance in volunteers at high CVD risk. Subjects (twelve males and sixteen females) participated in a randomised, placebo-controlled cross-over study (BMI: 26·77 (sd 3·36) kg/m2; mean age: 50·4 (sd 6·1) years). Volunteers were assessed at baseline, and at weeks 2 and 4 for anthropometry, BP and pulse wave velocity. Cortisol and cortisone levels in urine and saliva were determined by specific ELISA methods, and the cortisol/cortisone ratio was calculated. Fasting blood samples were obtained to assess plasma lipids, glucose, insulin and insulin resistance (homeostasis model assessment of insulin resistance). Volunteers consumed 500 ml of PJ or 500 ml of a placebo drink containing a similar amount of energy. Cortisol urinary output was reduced but not significant. However, cortisol/cortisone ratios in urine (P = 0·009) and saliva (P = 0·024) were significantly decreased. Systolic BP decreased from 136·4 (sd 6·3) to 128·9 (sd 5·1) mmHg (P = 0·034), and diastolic BP from 80·3 (sd 4·29) to 75·5 (sd 5·17) mmHg (P = 0·031) after 4 weeks of fruit juice consumption. Pulse wave velocity decreased from 7·5 (sd 0·86) to 7·44 (sd 0·94) m/s (P = 0·035). There was also a significant reduction in fasting plasma insulin from 9·36 (sd 5·8) to 7·53 (sd 4·12) mIU/l (P = 0·025) and of homeostasis model assessment of insulin resistance (from 2·216 (sd 1·43) to 1·82 (sd 1·12), P = 0·028). No significant changes were seen in the placebo arm of the study. These results suggest that PJ consumption can alleviate key cardiovascular risk factors in overweight and obese subjects that might be due to a reduction in both systolic and diastolic BP, possibly through the inhibition of 11β-hydroxysteroid dehydrogenase type 1 enzyme activity as evidenced by the reduction in the cortisol/cortisone ratio. The reduction in insulin resistance might have therapeutic benefits for patients with non-insulin-dependent diabetes, obesity and the metabolic syndrome.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers
      Available formats
Corresponding author
*Corresponding author: Dr E. A. S. Al-Dujaili, fax +44 131 474 0001, email
Hide All
1.Manach, C, Scalbert, A, Morand, C, et al. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
2.Sumner, MD, Elliott-Eller, M, Weidner, G, et al. (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 96, 810814.
3.Aviram, M, Dornfeld, L, Rosenblat, M, et al. (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 71, 10621076.
4.Seeram, NP, Adams, LS, Henning, SM, et al. (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16, 360367.
5.Longtin, R (2003) The pomegranate: nature's power fruit. J Natl Cancer Inst 95, 346348.
6.Gil, MI, Tomas-Barberan, FA, Hess-Pierce, B, et al. (2000) Antioxidant activity of pomegranate juice and relationship with phenolic composition and processing. J Agric Food Chem 48, 45814589.
7.Seeram, NP, Henning, SM, Zhang, Y, et al. (2006) Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 136, 24812485.
8.Mertens-Talcott, SU, Jilma-Stohlawetz, P, Rios, J, et al. (2006) Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem 54, 89568961.
9.Mousavinejad, G, Emam-Djomeh, Z, Rezaei, K, et al. (2009) Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem 115, 12741278.
10.Bialonska, D, Kasimsetty, SG, Khan, SI, et al. (2009) Urolithins, intestinal microbial metabolites of pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J Agric Food Chem 57, 1018110186.
11.González-Barrio, R, Truchado, P, Ito, H, et al. (2011) UV and MS identification of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J Agric Food Chem 59, 11521162.
12.Cerda, B, Periago, P, Espin, JC, et al. (2005) Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem 53, 55715576.
13.Basu, A & Penugonda, K (2009) Pomegranate juice: a heart healthy juice. Nutr Rev 67, 4956.
14.Avriam, M, Rosenblat, M, Gaitini, D, et al. (2003) PJ consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin Nutr 23, 423433.
15.Avriam, M & Dornfield, L (2001) Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 158, 195198.
16.Stowe, CB (2010) The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract 17, 113115.
17.Davidson, MH, Maki, KC, Dicklin, MR, et al. (2009) Effect of consumption of pomegranate juice on carotid intima-media thickness in men and women at moderate risk for coronary heart disease. Am J Cardiol 104, 936942.
18.Crozier, A, Yokota, T, Jaganath, IB, et al. (2006) Secondary metabolites in fruits, vegetables, beverages and other plant based dietary components. In Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet, pp. 208302 [Crozier, A, Clifford, MN and Ashihara, H, editors]. Oxford, UK: Blackwell.
19.Seeram, NP, Aviram, M, Zhang, Y, et al. (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56, 14151422.
20.Vicennati, V & Pasquali, R (2000) Abnormalities of the hypothalamic–pituitary–adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration. J Clin Endocrinol Metab 85, 40934098.
21.Walker, BR, Connacher, AA, Webb, DJ, et al. (1992) Glucocorticoids and blood pressure: a role for the cortisol/cortisone shuttle in the control of vascular tone in man. Clin Sci 83, 171178.
22.Duclos, M, Pereira, PM, Barat, P, et al. (2005) Increased cortisol bioavailability, abdominal obesity and the metabolic syndrome in obese women. Obes Res 13, 11571166.
23.Kidambi, S, Kitchen, JM, Grim, CE, et al. (2007) Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 49, 704711.
24.Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
25.Singleton, VL & Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic reagents. Am J Enol Vitol 16, 144158.
26.Benzie, IFF & Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’. The FRAP assay. Anal Biochem 239, 7076.
27.Serafini, M, Maiani, G & Ferro-Luzzi, A (1998) Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 128, 10031007.
28.Al-Dujaili, EAS, Kenyon, CJ, Nicol, MR, et al. (2011) Liquorice and glycyrrhetinic acid increase DHEA and deoxycorticosterone levels in vivo and in vitro by inhibiting adrenal SULT2A1 activity. Mol Cell Endocrinol 336, 102109.
29.Grassi, D, Lippi, C, Necozione, S, et al. (2005) Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr 81, 611614.
30.Chong, MFF, Macdonald, R & Lovegrove, JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104, S28S39.
31.Rosenblatt, M, Hayek, T & Aviram, M (2006) Anti-oxidative effects of pomegranate juice consumption by diabetic patients on serum and on macrophages. Atherosclerosis 187, 363371.
32.Edwards, CR, Stewart, PM, Burt, D, et al. (1988) Localisation of 11beta-hydroxysteroid dehydrogenase tissue specific protector of the mineralocorticoid receptor. Lancet ii, 986989.
33.Palermo, M, Shackleton, CH, Mantero, F, et al. (1996) Urinary free cortisone and the assessment of 11β-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf) 45, 605611.
34.Tomlinson, JW, Finney, J, Gay, C, et al. (2008) Impaired glucose tolerance and insulin resistance are associated with increased adipose 11beta-hydroxysteroid dehydrogenase type 1 expression and elevated hepatic 5alpha-reductase activity. Diabetes 57, 26522660.
35.Rahmouni, K, Correia, MLG, Haynes, WG, et al. (2005) Obesity-associated hypertension, new insights into mechanisms. Hypertension 45, 914.
36.Chen, T, Li, W, Wang, Y, et al. (2012) Body mass index and hypertension among Chinese governmental and institutional employees in Beijing. Angiology 63, 337342.
37.Esmaillzadeh, A, Tahbaz, F, Gaieni, I, et al. (2004) Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. J Med Food 7, 305308.
38.Kaplan, M, Hayek, T, Raz, A, et al. (2001) Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J Nutr 131, 20822089. Nigris, F, Williams-Ignarro, S, Botti, C, et al. (2006) Pomegranate juice reduces oxidized low-density lipoprotein down regulation of endothelial nitric oxide synthase in human coronary endothelial cells. Nitric Oxide 15, 259263.
40.Malik, A, Afaq, F, Sarfaraz, S, et al. (2005) Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci USA 102, 1481314818.
41.Kim, ND, Mehta, R, Yu, W, et al. (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 71, 203217.
42.Ignarro, LJ, Byrns, RE, Sumi, D, et al. (2006) Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide 15, 93102.
43.Hartman, RE, Shah, A, Fagan, AM, et al. (2006) Pomegranate juice decreases amyloid load and improves behaviour in a mouse model of Alzheimer's disease. Neurobiol Dis 24, 506515.
44.Matsui, T, Ueda, A, Oki, T, et al. (2001) α-Glucosidase inhibitory action of natural acylated anthocyanins. J Agric Food Chem 49, 19521956.
45.Gin, H, Rigalleau, V, Caubet, O, et al. (1999) Effects of red wine, tannic acid or ethanol on glucose tolerance in non-insulin dependent diabetic patients and on starch digestibility in vitro. Metabolism 48, 11791183.
46.Avignon, A, Hokayem, M, Bisbal, C, et al. (2012) Dietary antioxidants: do they have a role in the ongoing fight against abnormal glucose metabolism? Nutrition 28, 715721.
47.Cerdá, B, Espín, JC, Parra, S, et al. (2004) The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur J Nutr 43, 205220.
48.Larrosa, M, García-Conesa, MT, Espín, JC, et al. (2010) Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 31, 513539.
49.Martin-Gallan, P, Carrascossa, A, Gussinye, M, et al. (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biol Med 34, 15631574.
50.McDougall, GJ, Kulkarni, NN & Stewart, D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115, 193199.
51.Florian, JP & Pawelczyk, JA (2010) Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin Sci 118, 6169.
52.Schlaich, M (2010) Central sympathetic outflow to skeletal muscle: the major link between non-esterified fatty acids and elevated blood pressure. Clin Sci 118, 4345.
53.Fagot-Campagna, A, Balkau, B, Simon, D, et al. (1998) High free fatty acid concentration: an independent risk factor for hypertension in the Paris Prospective Study. Int J Epidemiol 27, 808813.
54.Ferrannini, E, Balkau, B, Coppack, SW, et al. (2007) Insulin resistance, insulin response, and obesity as indicators of metabolic risk. J Clin Endocrinol Metab 92, 28852892.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed