Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T02:52:01.684Z Has data issue: false hasContentIssue false

Fruits of Hemitrapa (Trapaceae) from the Miocene of eastern China, their correlation with Sporotrapoidites erdtmanii pollen and paleobiogeographic implications

Published online by Cambridge University Press:  20 May 2016

Qi Wang*
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China,


The fruits of the extinct genus Hemitrapa Miki (Trapaceae) are described from the Miocene Shanwang Formation, representing its first fossil record in the Cenozoic of China. Bearing a fusiform, relatively small fruit body with a very long stalk and four sub-equal, strongly ascending, horn-like arms, the Chinese fossil fruits are described as H. shanwangensis Q. Wang new species. Prior to this discovery, a dispersed, trapaceous pollen Sporotrapoidites erdtmanii (Nagy) Nagy was documented from the same formation. Recent paleobotanical and palynological studies in Europe demonstrated that Hemitrapa was closely related to S. erdtmanii, so the co-occurrence of Hemitrapa fruits and S. erdtmanii pollen at Shanwang implies that they may stem from the same parental plant population. Hemitrapa fruits have been widely recognized from the Miocene of mid-latitudes in France, Austria, the Czech Republic, Kazakhstan, Russia, Korea, Japan and the U.S.A. as well as from the late Oligocene–Miocene of Germany and the late Eocene of the Czech Republic. In contrast, dispersed S. erdtmanii pollen has been recovered from the Miocene in central Europe as well as from the late Eocene to the Pliocene of eastern Asiatic shelf basins near the Bohai Sea, Yellow Sea, East China Sea, and the Sea of Japan. Overall, the microfossil and macrofossil records demonstrate that the parental plants of Hemitrapa might have begun to diversify from the mid-latitudes of Eurasia since the Eocene, flourished in eastern Asia and Central Europe during the Miocene, and become extinct after the Pliocene.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Akhmetiev, M. A. 1978. Some Miocene plants of the Far East, having stratigraphic importance. Proceedings of the U.S.S.R. Academy of Sciences, Geological Series, 6:6772(In Russian).Google Scholar
APG (The Angiosperm Phylogeny Group). 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141:399436.CrossRefGoogle Scholar
Baranov, V. I. 1954. Stages of flora and vegetation development in the Tertiary on the U.S.S.R. Territory, Pt. 3. Uchenye Zapiski of Kazani University, Botanika 114 (4). Vysshaya Shkola Press, Moscow. 362 p.(In Russian).Google Scholar
Berichtold, F. and Presl, J. S. 1820. O Prirozenosti Rostlin. K. W. Endersa, Praze. 322 p.Google Scholar
Boulay, N. 1899. Flore fossile de Gergovie (Puy-de-Dôme). Annales de la Société Scientifique, Bruxelles, 23:55132.Google Scholar
Brown, R. W. 1935. Miocene leaves, fruits, and seeds from Idaho, Oregon, and Washington. Journal of Paleontology, 9:572587.Google Scholar
Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. United States Geological Survey Professional Paper 375, 119 p.Google Scholar
Brongniart, A. 1843. Enumération des Généres de Plants, Cultivés au Muséum d'Histoire Naturelle de Paris. Fortin, Masson et Cie, Paris. 136 p.Google Scholar
Budantsev, L. Y. 1960. The water chestnuts (Trapa and Hemitrapa) from the Tertiary deposits of the southeastern Baikal coast. Botanical Journal, 45:139144(In Russian).Google Scholar
Chen, J. R., Ding, B. Y., and Funston, A. M. 2007. Trapaceae. Flora of China, 13:290291.Google Scholar
Chung, C. H. and Choi, D. K. 1993. Paleoclimatic implications of palynoflora from the Yeonil Group (Miocene), Pohang area, Korea. Journal of the Paleontological Society of Korea, 9:143154(In Korean).Google Scholar
Chung, Y. H., Choi, H. K., Suh, K. H., and Shin, H. C. 1987. Numerical taxonomic study of the nuts of genus Trapa in Korea. Korean Journal of Plant Taxonomy, 17:4554(In Korean).Google Scholar
Chung, C. H. and Koh, Y. K. 2005. Palynostratigraphic and paleoclimatic investigations on the Miocene deposits in the Pohang area, South Korea. Review of Palaeobotany and Palynology, 135:111.Google Scholar
Deng, T. 2006. Chinese Neogene mammal biochronology. Vertebrata PalAsiatica, 44:143163.Google Scholar
Dumortier, B-C. 1829. Analyse des Familles des Plantes: Avec l'indication des principaux genres qui s'y rattachent. Imprimerie de J. Casterman Ainé, Tournay. 104 p.Google Scholar
Ferguson, D. K., Pingen, M., Zetter, R., and Hofmann, C. C. 1998. Advances in our knowledge of the Miocene plant assemblage from Kreuzau, Germany. Review of Palaeobotany and Palynology, 101:147177.CrossRefGoogle Scholar
Glück, H. 1940. Die Gattung Trapella. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 71:267336.Google Scholar
Golovneva, L. B. 1991. The new genus Palaeotrapa (Trapaceae?) and new species Quereuxia from the Rarytkin series (The Koryak upland, the Maastrichtian–Danian). Botanical Journal, 76:601609(In Russian).Google Scholar
Graham, S. A., Hall, J., Sytsma, K., and Shi, S. H. 2005. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences, 166:9951017.Google Scholar
Gregor, H-J. 1982. Fruktifikationen der Gattung Hemitrapa Miki (Trapellaceae) in den Ablagerungen der Oberen Süßwasser-Molasse Bayerns (mit Bemerkungen zu den fossilen Vorkommen Eurasiens). Feddes Repertorium, 93:351358.Google Scholar
Gregor, H-J. and Schmid, W. 1983. Ein Massenvorkommen von Hemitrapa heissigii-Fruchten (Trapaceae) in der Sondermüll-Deponie Gallenbach bei Dasing (LKrs. Aichach-Friedberg). Berichte des Naturwissenschaftlichen Vereins für Schwaben, 87:6369.Google Scholar
Guan, X. T., Fan, H. P., Song, Z. C., and Zheng, Y. H. 1989. Researches on Late Cenozoic palynology of the Bohai Sea. Nanjing University Press, Nanjing. 177 p. (In Chinese).Google Scholar
Harzhauser, M., Kovar-Eder, J., Nehyba, S., Ströbitzer-Hermann, M., Schwarz, J., Wójcicki, J., and Zorn, I. 2003. An early Pannonian (late Miocene) transgression in the northern Vienna Basin, the paleoecological feedback. Geologica Carpathica, 54:4152.Google Scholar
Heer, O. 1869. Flora Fossilis Alaskana. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 8:141.Google Scholar
Honda, M. and Sakisaka, M. 1930. Systema Plantarum Japonicarum. Sogokagaku Shuppan Kyoukai, Tokyo. 488 p. (In Japanese).Google Scholar
Hu, H. H. and Chaney, R. W. 1938. A Miocene flora from Shantung Province, China, Pt. 1. Introduction and systematic considerations. Carnegie Institution of Washington Publication, 507:182.Google Scholar
Huckriede, R. and Urban, B. 1998. Ein landschafts-und flußgeschichtlich wichtiges Pannon-bis Altquartär-Profil bei Fritzlar/Hessen. Zeitschrift der Deutschen Geologischen Gesellschaft, 149:105126.Google Scholar
Huzioka, K. 1972. The Tertiary floras of Korea. Journal of the Mining College of Akita University, Series A, 5:183.Google Scholar
Ina, H. 1981. Miocene fossils of the Mizunami Group, Central Japan 1. Plants of the Kani and Mizunami basins. Monograph of the Mizunami Fossil Museum, 2:120(In Japanese).Google Scholar
Ina, H. 1992. Miocene vegetational and climatic history of the eastern part of the Setouchi Geologic Province, Japan. Journal of Earth and Planetary Sciences, Nagoya University, 39:4782.Google Scholar
Kornilova, V. S. 1960. The Lower Miocene flora of Kushuka. Academii Nauk Kazahkskoi SSR, Alma-Ata. 170 p. (In Russian).Google Scholar
Kovar-Eder, J., Schwarz, J., and Wójcicki, J. J. 2002. The predominantly aquatic flora from Pellendorf, Lower Austria, Late Miocene, Pannonian—a systematic study. Acta Palaeobotanica, 42:125151.Google Scholar
Kovar-Eder, J., Wójcicki, J. J., and Zetter, R. 2005. Trapaceae from the late Miocene of Austria and European context. Acta Palaeobotanica, 45:165186.Google Scholar
Kryshtofovich, A. N. 1923. Contributions to the Tertiary flora of eastern Asia. Materials on Geology and Mineral Resources of the Far East, 18:114(In Russian).Google Scholar
Kryshtofovich, A. N. 1937. Dvadchati Let Sovetskoy Paleobotaniki. Priroda, 10:150163(In Russian).Google Scholar
Kryshtofovich, A. N. and Borsuk, M. 1939. Contribution to the Miocene flora from the western Siberia. Problems of Paleontology, 5:375396(In Russian).Google Scholar
Lei, Z. Q. 1989. The existence of Paleogene sediments in East China Sea Basin by palynological evidence. Acta Botanica Sinica, 31:141154(In Chinese).Google Scholar
Li, H. M. 1981. The geological age of Shanwang flora,. p. 158162. InPalaeontological Society of China (ed.), Selected papers of the 12th Annual Meeting of the Palaeontological Society of China. Science Press, Beijing. (In Chinese).Google Scholar
Li, J. G., Jiang, L., Zhang, Y. Y., and Wang, J. P. 2003. Neogene palynofloral successions from Taibei depression in southwestern continent shelf of the East China Sea. Acta Palaeontologica Sinica, 42:239256(In Chinese).Google Scholar
Linnaeus, C. 1753. Species Plantarum, Tomus 1. Impensis Laurentii Salvii, Holmiae. 560 p.Google Scholar
Liu, G. W. 1986. A Late Tertiary palynological assemblage from the Yaoshan Formation of Shanwang, Linqu County, Shandong. Acta Palaeobotanica et Palynologica Sinica, 1:6584(In Chinese).Google Scholar
Liu, G. W. and Leopold, E. B. 1992. Paleoecology of a Miocene flora from the Shanwang Formation, Shandong Province, northern East China. Palynology, 16:187212.Google Scholar
Mai, D. H. 1985. Entwicklung der Wasser-und Sumpfpflanzen-Gesellschaften Europas von der Kreide bis ins Quartär. Flora, 176:449511.Google Scholar
Mai, D. H. 2001. Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz. 2. Teil: Dicotyledonen. Palaeontographica Abteilung B, 257:35174.CrossRefGoogle Scholar
Mai, D. H. and Walther, H. 1991. Die oligozänen und untermiozänen Floren Nordwest-Sachsens und des Bitterfelder Raumes. Abhandlungen des Staatliches Museum für Mineralogie und Geologie zu Dresden, 38:1230(In German).Google Scholar
Matsuo, H. 1970. On the Ômichidani flora (Upper Cretaceous), inner side of Central Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 80:371389.Google Scholar
McHedlishvili, N. D. 1953. Pollen of Trapa L. Doklady Academii Nauk SSSR, 90:659662(In Russian).Google Scholar
Menzel, P. 1933. Neues zur Tertiär ora der Niederlausitz. Preussische Geologische Landesanstalt, Institut für Paläobotanik und Petrographie der Brennsteine, 3:143.Google Scholar
Merkulova, K. A. 1971. About the boundary of Paleogene and Neogene in West Siberia (reported by the spore-pollen records). Transactions of the Institute of Geology and Geophysics, 135:5160(In Russian).Google Scholar
Miki, S. 1941. On the change of flora in eastern Asia since Tertiary period (1). The clay or lignite beds flora in Japan with special reference to the Pinus trifolia beds in Central Hondo. Japanese Journal of Botany, 11:237303.Google Scholar
Miki, S. 1948. For the systematic position of Hemitrapa and some fossil Trapa. Botanical Magazine, Tokyo, 61:7477(In Japanese).Google Scholar
Miki, S. 1952a. On the systematic position of Hemitrapa and some other fossil Trapa. Palaeobotanist, 1:346350.Google Scholar
Miki, S. 1952b. Trapa of Japan with special reference to its remains. Journal of the Institute of Polytechnics, Osaka City University, Series D, 3:130.Google Scholar
Miki, S. 1959. Evolution of Trapa from ancestral Lythrum through Hemitrapa. Proceedings of the Japan Academy, 35:289294.Google Scholar
Miki, S. 1961. Aquatic floral remains in Japan. Journal of Biology, Osaka City University, 12:91121.Google Scholar
Mohr, B. A. 1983. Nachweis von Pollen der Gattung Hemitrapa Miki (Trapaceae) aus mittelmiozanen Schichten von Gallenbach bei Dasing (LKrs. Aichach-Friedberg). Berichte des Naturwissenschaftlichen Vereins für Schwaben, 87:6972.Google Scholar
Mohr, B. A. R. and Gee, C. T. 1990. Sporotrapoidites erdtmanii (Nagy) Nagy, a trapaceous pollen species pertaining to the Oligocene to Pliocene genus Hemitrapa Miki. Grana, 29:285293.Google Scholar
Nagy, E. 1985. Sporomorphs of the Neogene in Hungary. Geologica Hungarica, Series Palaeontologica, 47:1471.Google Scholar
Nakano, H. 1913. Beiträge zur Kenntnis der Variationen von Trapa in Japan. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 50:440458.Google Scholar
Nakano, H. 1964. Further studies on Trapa from Japan and its adjacent countries. Botanical Magazine, Tokyo, 77:159167.Google Scholar
Nathorst, A. G. 1888. Zur fossilen flora Japan's. Palaeontologische Abhandlungen, 4:197250.Google Scholar
Okutsu, H. 1939. Fossil Trapa in Japan with the description of 2 new species. Journal of the Geological Society of Japan, 46:328329(In Japanese).Google Scholar
Oliver, D. 1887. Trapella sinensis, Oliv. Hooker's Icones Plantarum 16, pl. 1595.Google Scholar
Onoe, T. 1974. A middle Miocene flora from Oguni-Machi, Yamagata Prefecture, Japan. Report, Geological Survey of Japan, 253:164.Google Scholar
Pigg, K. B. and Wehr, W. C. 2002. Tertiary flowers, fruits, and seeds of Washington State and adjacent areas—Pt. 3. Washington Geology, 30:316.Google Scholar
Popov, P. A. 1956. Pollen of Trapa L. discovered in Tertiary deposits of the Enissey Mountain Ridge. Doklady Academii Nauk SSSR, 110:453456(In Russian).Google Scholar
Reinink-Smith, L. M. and Leopold, E. B. 2005. Warm climate in the late Miocene of the South coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology, 29:205262.Google Scholar
Saint-Hilaire, J. H. J. 1805. Exposition des Familles Naturelles et de la Germination des Plantes, Tome 2. Treuttel et Würtz, Paris & Strasbourg. 473 p.Google Scholar
Saporta, G. 1878. Essai Descriptif sur les Plantes Fossiles des Arkoses de Brives près de Puy-En-Velay. Annales de la Société d'Agriculture, Sciences, Arts et Commerce du Puy, 33:172.Google Scholar
Schimper, W. P. 1874. Traité de Paléontologie Végétale, Tome 3. J. B. Baillière et Fils, Paris, Hippolyte Baillière, London & G. Bailly- Baillière, Madrid. 896 p.Google Scholar
Schimper, W. and Schenk, A. 1890. Palaeophytologie,. p. 1985. InZittel, K. A.(ed.). Handbuch der Palaeontologie 2. Druck und Verlag von R. Oldenbourg, München & Leipzig.Google Scholar
Shaw, C. L. 1995. Palynomorphs of Oligo–Miocene in Taiwan. Taiwania, 40:5768.Google Scholar
Shikama, T. 1964. Index fossils of Japan. Asakura Shoten, Tokyo. 287 p. (In Japanese).Google Scholar
Shimakura, M. 1963. Pollenstratigraphic studies of Japanese Cenozoic formations VII. The Jigokudani Formation. Journal of Nara Gakugei University, Natural Science, 11:1324(In Japanese).Google Scholar
Song, Z. C., Guan, X. T., Li, Z. R., Zheng, Y. H., Wang, W. M., and Hu, Z. H. 1985. A research on Cenozoic palynology of the Longjing structural area in the shelf basin of the East China Sea (Donghai) region. Cenozoic–Mesozoic Palaeontology and Stratigraphy of East China, Series 1. Anhui Science and Technology Publishing House, Hefei. 209 p. (In Chinese).Google Scholar
Song, Z. C., Zheng, Y. H., Li, M. Y., Zhang, Y. Y., Wang, W. M., Wang, D. N., Zhao, C. B., Zhou, S. F., Zhu, Z. H., and Zhao, Y. N. 1999. Fossil spore and pollen of China, Vol. 1: The Late Cretaceous and Tertiary spore and pollen. Science Press, Beijing. 910 p. (In Chinese).Google Scholar
Songtham, W. 2003. Stratigraphic correlation of Tertiary basins in northern Thailand using alage, pollen and spore. Unpublished Ph.D. dissertation, Chiang Mai University, Chiang Mai. 280 p.Google Scholar
Songtham, W., Ratanasthien, B., Watanasak, M., Mildenhall, D. C., Singharajwarapan, S., and Kandharosa, W. 2005. Tertiary basin evolution in northern Thailand: A palynological point of view. Natural History Bulletin of the Siam Society, 53:1732.Google Scholar
Strömberg, C. A. E., Friis, E. M., Liang, M. M., Werdelin, L., and Zhang, Y. L. 2007. Palaeoecology of an early–middle Miocene lake in China: Preliminary interpretations based on phytoliths from the Shanwang basin. Vertebrata PalAsiatica, 45:145160.Google Scholar
Sun, B. 1999. Shanwang plant fossils. Shandong Science and Technology, Ji'nan. 167 p. (In Chinese).Google Scholar
Sun, G., Zheng, S. L., Dilcher, D. L., Wang, Y. D., and Mei, S. W. 2001. Early angiosperms and their associated plants from western Liaoning, China. Shanghai Scientific and Technological Education Publishing House, Shanghai. 227 p.Google Scholar
Sun, M. R., Sun, X. Y., Zhao, Y. N., Wang, D. N., Li, Z. R., Hu, Z. H., Xu, J. R., and Mei, P. F. 1989. Cenozoic paleobiota of the continental shelf of the East China Sea (Donghai), Micropaleobotanical volume. Geological Publishing House, Beijing. 160 p. (In Chinese).Google Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University, Series 4 Geology and Mineralogy, 11:119398.Google Scholar
Tanai, T. 1971. The Miocene Sakipenpetsu flora from Ashibetsu area, Central Hokkaido, Japan. Memoirs of the National Science Museum, 4:127172.Google Scholar
Tanai, T. and Onoe, T. 1959. A Miocene flora from the northern part of the Jōban coal field, Japan. Bulletin of the Geological Survey of Japan, 10:261286.Google Scholar
Tanai, T. and Suzuki, N. 1963. Miocene floras of southwestern Hokkaido, Japan. Pt. II. Systematic considerations,. p. 97149. InTanai, T. and Suzuki, N.(eds.). Tertiary floras of Japan, Miocene floras. The Collaborating Association to Commemorate the 80th Anniversary of the Geological Survey of Japan, Tokyo.Google Scholar
Tanai, T. and Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy, 15:281360.Google Scholar
Tao, J. R., Sun, B., and Yang, H. 1999. Plant megafossils of the Shanwang Formation,. p. 1389. InSun, B.(ed.). Shanwang plant fossils. Shandong Science and Technology, Ji'nan. (In Chinese).Google Scholar
Teodoridis, V. and Kvaček, Z. 2006. Palaeobotanical research of the early Miocene deposits overlying the main coal seam (Libkovice and Lom Members) in the Most Basin (Czech Republic). Bulletin of Geosciences, 81:93113.Google Scholar
Vassiljev, V. N. 1949. Trapa L.,. p. 638662. InShishkin, B. K. and Bobrov, E. G.(eds.). Flora URSS, Vol. 15. Editio Academiac Scientiarum URSS, Mosqua & Leningrad. (In Russian).Google Scholar
Vassiljev, V. N. 1967. A new genus of Trapaceae. Palaeontological Journal, 2:107112(In Russian).Google Scholar
Wan, W. H. 2000. Trapaceae,. p. 126. InChen, J. R.(ed.). Flora Reipublicae Popularis Sinicae, Vol. 53. Science Press, Beijing. (In Chinese).Google Scholar
Wang, Q., Dilcher, D. L., and Lott, T. A. 2007. Podocarpium A. Braun ex Stizenberger 1851 (formerly Podogonium Heer 1857) from the middle Miocene of eastern China and its paleoecology and biogeography. Acta Palaeobotanica, 47:237251.Google Scholar
Wang, Q., Dilcher, D. L., Zhu, X. Y., Zhou, Y. L., and Lott, T. A. 2006. Fruit and leaflets of Wisteria (Leguminosae, Papilionoideae) from the Miocene of Shandong Province, eastern China. International Journal of Plant Sciences, 167:10611074.CrossRefGoogle Scholar
Wang, Q., Manchester, S. R., and Dilcher, D. L. 2010. Fruits and foliage of Pueraria (Leguminosae, Papilionoideae) from the Neogene of Eurasia, and their biogeographic implications. American Journal of Botany, 97:19821998.Google Scholar
Wang, W. M. 2006. Correlation of pollen sequences in the Neogene palynofloristic regions of China. Palaeoworld, 15:7799.CrossRefGoogle Scholar
Wang, W. M. and Yamanoi, T. 1996. New data on Miocene pollen floras of the Oga Peninsula, Northeast Honshu of Japan, with comparison to those of Northern China. Japanese Journal of Palynology, 42:113.Google Scholar
Wang, X. Z. 1981. An introductory survey of the paleo-surroundings of Miocene Shan-Wang Lake in Lin Chu, Shantung Province. Acta Scientiarum Naturalium Universitatis Pekinensis, 17:100111(In Chinese).Google Scholar
Wang, X. Z. 1988. The Miocene palynofloras of China and their palaeoenvironmental significance,. p. 564570. InWhyte, P., Aigner, J. S., Jablonski, N. G., Taylor, G., Walker, D., Wang, P. X., and Chak-Lam, S.(eds.). The Palaeoenvironment of East Asia from the Mid-Tertiary: Proceedings of the Second Conference, Vol. 1 Geology, sea level changes, palaeoclimatology and palaeobotany. Centre of Asian Studies, University of Hong Kong, Hong Kong.Google Scholar
Wang, X. Z. 1991. Palynoflora in the diatomaceous shale of the Shanwang Formation, Shandong, and its palaeoenvironment. Acta Micropalaeontologica Sinica, 8:271279(In Chinese).Google Scholar
Wang, X. Z. 1999. Studies on the palynoflora of the Shanwang Formation and the discovery of the fungal fossils,. p. 90133. InSun, B.(ed.). Shanwang plant fossils. Shandong Science and Technology, Ji'nan. (In Chinese).Google Scholar
Wójcicki, J. J. and Kvaček, Z. 2002. Hemitrapa fruits (Trapaceae) in the late Early Miocene Lom Coal seam, Most Formation, North Bohemia. Acta Palaebotanica, 42:117124.Google Scholar
Wójcicki, J. J. and Kvaček, Z. 2003. The earliest fossil record of the Trapaceae in Europe from the late Eocene diatomite of Kučlín, North Bohemia. Phytologia Balcanica, 9:165174.Google Scholar
Wójcicki, J. J. and Wilde, V. 2001. A new species of Trapa (Trapaceae) from the Pliocene of the Zennern depression, near Fritzlar (Hesse, Germany). Senckenbergiana Lethaea, 81:1723.Google Scholar
Wójcicki, J. J. and Zastawniak, E. 2003. The Trapaceae family in the Tertiary of Europe—preliminary results. Botanical Guidebooks, 26:153185(In Polish).Google Scholar
Wolfe, J. A. and Tanai, T. 1980. The Miocene Seldovia Point flora from the Kenai Group, Alaska. United States Geological Survey Professional Paper, 1105:152.Google Scholar
Worobiec, E. 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobotanica, 49:5133.Google Scholar
Yabe, A. 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bulletin of the Geological Survey of Japan, 59:397413.Google Scholar
Yamanoi, T. 1992. Palyno-flora of middle Miocene sediments of Okushiri Island, southwest Hokkaido. Japanese Journal of Palynology, 38:106115(In Japanese).Google Scholar
Yamanoi, T., Wang, W. M., and Li, J. R. 1993. A middle Miocene pollen flora of Core CB-20, southwest end of Bohai Sea. Japanese Journal of Palynology, 39:103111.Google Scholar
Yang, S. P. and Sun, B. 2000. Palaeoecology of Miocene Shanwang biota in Shandong Province, East China. Journal of Palaeogeography, 2:111(In Chinese).Google Scholar
Yang, H. and Yang, S. P. 1994. The Shanwang fossil biota in eastern China: A Miocene Konservät-Lagerstätte in lacustrine deposits. Lethaia, 27:345354.Google Scholar
Yi, S., Yi, S., Batten, D. L., Yun, H., and Park, S. J. 2003. Cretaceous and Cenozoic non-marine deposits of the northern South Yellow Sea Basin, offshore western Korea: Palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191:1544.Google Scholar
Zetter, R. and Ferguson, D. K. 2001. Trapaceae pollen in the Cenozoic. Acta Palaeobotanica, 42:321339.Google Scholar
Zhang, J. and Wang, Q. 2010. Further observations on the pod fossils of Wisteria (Leguminosae) from the middle Miocene Shanwang Formation of Linqu, Shandong Province. Acta Palaeontologica Sinica, 49:8795(In Chinese).Google Scholar
Zhao, C. B. 1992. The discovery of Sporotrapoidites in Fujin Formation in Sanjiang Basin. Acta Petrolei Sinica, 13:915(In Chinese).Google Scholar
Zheng, Y. H. 1982. Miocene spores and pollen grains from Xianju and Ninghai, eastern Zhejiang,. p. 7174. InThe Palynological Society of China (ed.), Selected Papers from the First Symposium of the Palynological Society of China. Science Press, Beijing. (In Chinese).Google Scholar
Zheng, Y. H., Zhou, S. F., Liu, X. Q., Wang, L. Y., Xu, S. J., and Wang, X. Z. 1981. Neogene sporo-pollen grains from northern Jiangsu and South Yellow Sea Basin. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, 3:2990(In Chinese).Google Scholar