Skip to main content
×
Home

Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization

  • Luana Morais (a1), Thomas Rich Fairchild (a2), Daniel J.G. Lahr (a3), Isaac D. Rudnitzki (a4) (a5), J. William Schopf (a6) (a7) (a8) (a9), Amanda K. Garcia (a6) (a7), Anatoliy B. Kudryavtsev (a6) (a7) and Guilherme R. Romero (a1)...
Abstract
Abstract

Vase-shaped microfossils (VSMs) occur in dolomitic extraclasts of indeterminate provenance within the basal diamictite of the Neoproterozoic Urucum Formation (Jacadigo Group) of west-central Brazil, having an age constrained between 889±44 Ma (K-Ar; basement rocks) and 587±7 Ma (40Ar/39Ar age of early metamorphic cryptomelane in overlying manganese ore). Early isopachous carbonate cement entombed these VSMs, preserving rare direct evidence of original wall composition that is carbonaceous (now kerogenous) in practically all specimens. Some tests are siliceous or composed of a quartz-kerogen mixture; secondary replacement explains some features of these tests, but original biomineralization seems more likely for others. This interpretation, coupled with test morphology, suggests affinity to arcellinid testate amoebae. Five VSM taxa are recognized in the deposit: Cycliocyrillium simplex Porter, Meisterfeld, and Knoll, 2003, and C. torquata Porter, Meisterfeld, and Knoll, 2003, originally described in the Chuar Group (USA), and three new monospecific genera—Palaeoamphora urucumense n. gen. n. sp., Limeta lageniformis n. gen. n. sp., and Taruma rata n. gen. n. sp. Most of the taxonomically important characteristics of these VSMs occur also in extant testate amoebae, but the combinations of some characters, such as organic-walled tests having exceptionally long necks that exhibit terminal apertures (L. lageniformis n. gen. n. sp.), are evidently novel additions to the known diversity of Neoproterozoic VSMs. Evidence of glacially influenced deposition in the conformably overlying Santa Cruz Formation may indicate that the Urucum Formation slightly preceded or was penecontemporaneous with a major Neoproterozoic glaciation, although the VSM-hosting extraclasts must be older, possibly rivaling the age of the testate amoebae of the Chichkan Formation (766±7 Ma) that are currently regarded as the oldest record of protists in the geological record.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Allison C.W., and Awramik S.M., 1989, Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada: Precambrian Research, v. 43, p. 253–224.
Almeida F.F.M., 1964, Glaciação eocambriana em Mato Grosso: Boletim da Divisão de Geologia e Mineralogia, Departamento Nacional de Produção Mineral, v. 117, p. 111. [in Portuguese]
Anderson R.P., Fairchild I.J., Tosca N.J., and Knoll A.H., 2013, Microstructures in metasedimentary rocks from the Neoproterozoic Bonahaven Formation, Scotland: Microconcretions, impact spherules, or microfossils?: Precambrian Research, v. 233, p. 5972.
Angerer T., Hagemann S.G., Walde D., Halverson G.P., and Boyce A.J., 2016, Multiple metal sources in the glaciomarine facies of the Neoproterozoic Jacadigo iron formation in the “Santa Cruz deposit”, Corumbá, Brazil: Precambrian Research, v. 275, p. 369393.
Babinski M., Boggiani P.C., Trindade R.I.F., and Fanning C.M., 2013, Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil: Gondwana Research, v. 23, p. 988997.
Barber A., Siver P.A., and Karis W., 2013, Euglyphid testate amoebae (Rhizaria: Euglyphida) from an Arctic Eocene waterbody: evidence of evolutionary stasis in plate morphology for over 40 million years: Protist, v. 164, p. 541555.
Barbosa O., 1949, Contribuição à geologia da região Brasil-Bolivia: Mineração e Metalurgia, v. 13, p. 271278. [in Portuguese]
Battison L., and Brasier M.D., 2012, Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland: Precambrian Research, v. 196, p. 204217.
Binda P.L., and Bokhari M.M., 1980, Chitinozoanlike microfossils in a late Precambrian dolostone from Saudi Arabia: Geology, v. 8, p. 7071.
Bloeser B., 1985, Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona: Journal of Paleontology, v. 59, p. 741765.
Bloeser B., Schopf J.W., Horodyski R.J., and Breed W.J., 1977, Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona: Science, v. 195, p. 676679.
Boggiani P.C., 2010, Sedimentação autigênica Neoproterozóica e mineralizações associadas—um registro não uniformitarista [Docent dissertation]: São Paulo, Universidade de São Paulo, 136 p. [in Portuguese]
Boggiani P.C., and Coimbra A.M., 2002, Morraria do Puga, MS—Típica associação neoproterozoica de glaciação e sedimentação carbonática, in Schobbenhaus, C., Campos, D.A., Queiroz, E.T., Winge, M., and Berbert-Born, M.L.C., eds., Sítios Geológicos e Paleontológicos do Brasil: DNPM/CPRM - Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), v. 1, p. 195201. [in Portuguese] http://sigep.cprm.gov.br/sitio037/sitio037.htm
Boggiani P.C., Ferreira V.P., Sial A.N., Babinski M., Trindade R.I.F., Aceñolaza G., and Parada M.A., 2003, The cap carbonate of the Puga Hill (Central South America) in the context of the post-Varanger Glaciation: Fourth South American Symposium on Isotope Geology, Salvador, Brazil, 2003, Abstracts.
Bosak T., Lahr D.J.G., Pruss S.B., Macdonald F.A., Dalton L., and Matys E., 2011, Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia: Earth and Planetary Science Letters, v. 308, p. 2940.
Bosak T., Lahr D.J., Pruss S.B., Macdonald F.A., Gooday A.J., Dalton L., and Matys E.D., 2012, Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates: Geology, v. 40, p. 6770.
Butts S.H., 2014, Silicification, in Laflamme, M., Schiffbauer J.D., Darroch S.A.F., eds., Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization: The Paleontological Society Papers, v. 20, p. 15–33.
Butts S.H., and Briggs D.E.G., 2011, Silicification through time, in Allison A., and Bottjer D., eds., Taphonomy, Second Edition—Process and Bias Through Time: Dordrecht, Netherlands, Springer, p. 411434.
Butterfield N.J., 2015, Early evolution of the Eukarya: Palaeontology, v. 58, p. 517.
Butterfield N.J., Knoll A.H., and Swett K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, p. 184.
Calça C.P., and Fairchild T.R., 2012, Petrographic approach to the study of organic microfossils from the Irati Subgroup (Permian, Parana Basin, Brazil): Journal of South American Earth Sciences, v. 35, p. 5161.
Cary L., Alexandre A., Meunier J.D., Boeglin J. L., and Braun J.J., 2005, Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon): Biogeochemistry, v. 74, p. 101114.
Châtelet E.A., Noiriel C., and Delaine M., 2013, Three-dimensional morphological and mineralogical characterization of testate Amoebae: Microscopy and Microanalysis, v. 19, p. 15111522.
Cohen K.M., Finney S.C., Gibbard P.L., and Fan J.X., 2013, The ICS international chronostratigraphic chart: Episodes, v. 36, 199204.
Cornelis J.T., Delvaux B., Georg R.B., Lucas Y., Ranger J., and Opfergelt S., 2013, Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review: Biogeosciences, v. 8, p. 89112.
Corsetti F. A., Awramik S. M., and Pierce D., 2003, A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA: Proceedings of the National Academy of Sciences, v. 100, p. 4399–4404.
Dalton L.A., Bosak T., Macdonald F.A., Lahr D.J., and Pruss S.B., 2013, Preservational and morphological variability of assemblages of agglutinated eukaryotes in Cryogenian cap carbonates of northern Namibia: Palaios, v. 28, p. 6779.
Dehler C.M., Fanning C.M., Link P.K., Kingsbury E.M., and Rybczynski D., 2010, Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: paleogeography of rifting western Laurentia: Geological Society of America Bulletin, v. 122, p. 16861699.
Ding L., Zhang L., Li Y., and Dong J., 1992, The Study of the Late Sinian–Early Cambrian Biotas from the Northern Margin of the Yangtze Platform: Beijing, Scientific and Technical Documents Publishing House, 135 p.
Dorr J.V.N., 1945, Manganese and iron deposits of Morro do Urucum, Mato Grosso, Brazil: Bulletin of the United States Geological Survey 946A, 47 p.
Dorr J. V. N., 1973, Iron-formation in South America: Economic Geology, v. 68, p. 10051022.
Duan C., 1985, The earliest Cambrian vase-shaped microfossils of Fangxian County, Hubei Province: Bulletin of the Tianjin Institute of Geology and Mineral Resources, v. 13, p. 87107.
Duan C., Cao F., and Zhang L., 1993, Vase-shaped microfossils from top of the Tongying Formation in Xixiang, Shaanxi: Acta Micropalaeontologica Sinica, v. 10, 397408.
Ewetz C.E., 1933, Einige neue Fossilfunde in der Visingsöformation: Geologiska Föreningen i Stockholm Förhandlingar (GFF), v. 55, p. 506518.
Fairchild T.R., Barbour A.P., and Haralyi N.L., 1978, Microfossils in the “Eopaleozoic” Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil: Boletim IG-USP, v. 9, p. 7478.
Fiz-Palacios O., Leander B.S., and Heger T.J., 2014, Old lineages in a new ecosystem: diversification of Arcellinid Amoebae (Amoebozoa) and peatland mosses: PLOS One, 9:e95238.
Folk R.L., 1987, Detection of organic matter in thin-sections of carbonate rocks using a white card: Sedimentary Geology, v. 54, p. 193200.
Freitas B.T., Warren L.V., Boggiani P.C., De Almeida R.P., and Piacentini T., 2011, Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil: Sedimentary Geology, v. 238, p. 4870.
Gassowsky G.N., 1936, Nove Rhizopoda iz ozer Konchezerskoi grupp (v Karelii) – (French summary: Quelques Rhizopodes nouveaux des lacs du group de Kontchesero [en Karélie]): Trudy Borodinskoi Biologicheskoi Stantsii/Berichte der Biologischen Borodin Station, v. 8, p. 101121.
Green J.W., Knoll A.H., and Swett K, 1988, Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central east Greenland: Journal of Paleontology, v. 62, p. 835852.
Hasui Y., and Almeida F.D., 1970, Geocronologia do centro-oeste brasileiro: Boletim da Sociedade Brasilerira de Gelogia, v. 19, p. 526. [in Portuguese]
Hodson M.J., White P.J., Mead A., and Broadley M.R., 2005, Phylogenetic variation in the silicone composition of plants: Annals of Botany, v. 96, p. 10271046.
Hoffman P.F., and Schrag D.P., 2002, The snowball Earth hypothesis: testing the limits of global change: Terra Nova, v. 14, p. 129155.
Hoffman P.F., Kaufman A.J., Halverson G.P., and Schrag D.P., 1998, A Neoproterozoic snowball earth: Science, v. 281, p. 13421346.
Horodyski R.J., 1993, Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA: Precambrian Research, v. 61, p. 241278.
Karlstrom K.E., Bowring S.A., Dehler C.M., Knoll A.H., Porter S.M., Des Marais D.J., Weil A.B., Sharp Z.D., Geissman J.W., Elrick M.B., Timmons M.J., Crossey L.J., and Davidek K.L., 2000, Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma: Geology, v. 28, p. 619622.
Knoll A.H., 2000, Learning to tell Neoproterozoic time: Precambrian Research, v. 100, p. 320.
Knoll A.H., 2014, Paleobiological perspectives on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology, v. 6, p. 114.
Knoll A.H., and Calder S., 1983, Microbiotas of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard: Palaeontology, v. 26, p. 467496.
Knoll A.H., and Vidal G, 1980, Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden: Geologiska Föreningen I Stockholm Förhandlingar, v. 102, 207211.
Knoll A.H., Swett K., and Burkhardt E., 1989, Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen: Journal of Paleontology, v. 63, p. 129145.
Knoll A.H., Swett K., and Mark J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.
Kosakyan A., Heger T.J., Leander B.S., Todorov M., Mitchell E.A., and Lara E., 2012, COI barcoding of Nebelid testate amoebae (Amoebozoa: Arcellinida): extensive cryptic diversity and redefinition of the Hyalospheniidae Schultze: Protist, v. 163, p. 415434.
Lahr D.J., Bosak T., Lara E., and Mitchell E.A., 2015, The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems: PeerJ, 3:e1234. https://doi.org/10.7717/peerj.1234
Leclerc M., 1815, Note sur la Difflugie, nouveau genre de Polype amorph: Mémories du Muséum d’Histoire Naturelle (Paris), v. 2, p. 474478.
Leeuwen P.V., and Graf J.L., 1987, The Urucum-Mutun iron and manganese deposits, Mato Grosso do Sul, Brazil and Sta. Cruz, Bolivia. Part II. Stratigraphy, lithology and origin: Geologie en Mijnbouw, v. 65, p. 327343.
Lipina O.A., 1959, A find of foraminifera in the Silurian and Ordovician layers Siberia: Doklady Akademii Nauk SSSR, v. 128, p. 823826. (in Russian)
Li Y., Guo J., Zhang X., Zhang W., Liu Y., Yang W., Li Y., Liu L., and Shu D., 2008, Vase-shaped microfossils from the Ediacaran Weng’an biota, Guizhou, South China: Gondwana Research, v. 14, p. 263268.
Litherland M., and Bloomfield K., 1981, The Proterozoic history of eastern Bolivia: Precambrian Research, v. 15, p. 157179.
Litherland M., Annells R.N., Appleton J.D., Berrangé J.P., Bloomfield K., Burton C.C.J., Darbyshire D.P.F., Fletcher C.J.N., Hawkins M.P., Klinck B.A., Llanos A., Mitchell W.I., O’Connor E.A., Pitfield P.E.J., Power G., and Webb B.C., 1986, The geology and mineral resources of the Bolivian Precambrian shield: British Geological Survey, Overseas Memoir, v. 9, 153 p.
Loeblich A.R. Jr., and Tappan H., 1964, Treatise on Invertebrate Paleontology. Part C. Sarcodina, chiefly “Thecamoebans” and Formainiferida: Boulder, CO and Lawrence, KS, The Geological Society of America and the University of Kansas, v. 1, 510 p.
Loeblich A.R. Jr., and Tappan H., 1988, Foraminiferal Genera and their Classification: New York, Van Nostrand Reinhold Co., Inc., v. 1, 970 p., v. 2, 212 p., 847 pl.
Macdonald F.A., Halverson G.P., Strauss J.V., Smith E.F., Cox G., Sperling E.A., and Roots C.F., 2010, Early Neoproterozoic Basin Formation in Yukon, Canada: Implications for the make-up and break-up of Rodinia: Geoscience Canada, v. 39, p. 77100.
Maciel P., 1959, Tilito Cambriano (?) no Estado de Mato Grosso: Boletim da Sociedade Brasileira de Geologia, São Paulo, v. 8, p. 3139. [in Portuguese]
Maithy P.K., and Babu R., 1988, Chitinozoa-like remains from Vindhyan Supergroup of Son Valley: Paleobotanist, v. 37, p. 7780.
Maliva R.G., and Siever R., 1988, Mechanism and controls of silicification of fossils in limestones: Journal of Geology, v. 96, p. 387398.
Maliva R.G., Knoll A.H., and Siever R., 1989, Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle: Palaios, v. 4, p. 519532.
Martí Mus M., and Moczydłowska M., 2000, Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visings Group, Sweden: Norsk Geologisk Tidsskrift, v. 80, p. 213228.
Maslov A.V., 2004, Riphean and Vendian sedimentary sequences of the Timanides and Uralides, the eastern periphery of the East European Craton: Geological Society, London, Memoirs, v. 30, p. 1935.
Maslov A.V., Abduazimova Z.M., Karsten L.A., and Puchkov V.N., 1994, Melanocyrillium forms first found in the Riphean type sections of the Southern Urals, Sostoyanie, problemy i zadacha geologicheskogo kartirovaniya oblastei razvitiya dokembriya na territorii Rossii: Tezisy doklada Vserossiiskoi soveshch (Proceedings of the All-Russia Conference on State of the Art, Problems and Objectives of Geological Survey within the Precambrian Regions of Russia), St. Petersburg: VSEGEI, 90 p. (in Russian)
Nautiyal A.C., 1978, Discovery of cyanophycean algal remains and chitinozoans from the Late Precambrian argillaceous sequence of Satpuli, Garhwal Himalaya, India: Current Science, v. 47, p. 222226.
O’Connor E.A., and Walde D.H.G., 1985, Recognition of an Eocambrian Orogenic Cycle in SW Brazil and SE Bolivia: Zentralblatt für Geologie und Paläontologie, v. 9, p. 14411456.
Ogden C.G., and Ellison R.L., 1988, The value of the organic cement matrix in the identification of the shells of fossil testate amoebae: Journal of Micropalaeontology, v. 7, p. 233240.
Parfrey L.W., Lahr D.J.G., Knoll A.H., and Katz L.A., 2011, Estimating the timing of early eukaryotic diversification with multigene molecular clocks: Proceedings of the National Academy of Sciences, USA, v. 108, p. 13624–13629.
Piacentini T., Vasconcelos P.M., and Farley K.A., 2013, 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil: Precambrian Research, v. 248, p. 4862.
Porter S., 2011, The rise of predators: Geology, v. 39, p. 607608.
Porter S.M., and Knoll A.H., 2000, Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.
Porter S.M., Meisterfeld R., and Knoll A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.
Puppe D., Kaczorek D., Wanner M., and Sommer M., 2014, Dynamics and drivers of the protozoan Si pool along a 10-year chronosequence of initial ecosystem states: Ecological Engineering, v. 70, p. 477482.
Reytlinger E.A., 1950, Foraminifera from the Middle Carboniferous deposits of the central part of the Russian Platform (exclusive of the family Fusulinidae): Akademiya Nauk SSSR, Trudy Instituta Geologicheskikh Nauk, vypusk 126, Geologicheskaya Seriya, v. 47, p. 1127. [in Russian]
Saito Y., Tiba T., and Matsubara S., 1988, Precambrian and Cambrian cherts in northwestern Tasmania: Bulletin of the National Science Museum, Series C, v. 14, p. 5970.
Sarmiento J.L., 2013, Ocean Biogeochemical Dynamics: Princeton, New Jersey, Princeton University Press, 528 p.
Schopf J.W., 1992, Evolution of the Proterozoic biosphere: benchmarks, tempo, and mode, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere, a Multidisciplinary Study: Cambridge, Cambridge University Press, p. 583600.
Schopf J.W., Kudryavtsev A.B., Agresti D.G., Wdowiak T.J., and Czaja A.D., 2002, Laser-Raman imagery of Earth’s earliest fossils: Nature, v. 416, p. 7376.
Schopf J.W., Kudryavtsev A.B., Agresti D.G., Czaja A.D., and Wdowiak T.J., 2005, Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils: Astrobiology, v. 5, p. 333371.
Schopf J.W., Tripathi A., and Kudryavtsev A.B., 2006, Three-dimensional confocal optical microscopy of Precambrian microscopic organisms: Astrobiology, v. 6, p. 116.
Schopf J.W., Calça C.P., Garcia A.K., Kudryavtsev A.B., Souza P.A., Félix C.M., and Fairchild T. R., 2016, In situ confocal laser scanning microscopy and Raman spectroscopy of bisaccate pollen from the Irati Subgroup (Permian, Paraná Basin, Brazil): comparison with acid-macerated specimens: Review of Palaeobotany and Palynology, v. 233, p. 169175.
Sergeev V.N., and Schopf J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p. 363401.
Siever R., 1992, The silica cycle in the Precambrian: Geochimica et Cosmochimica Acta, v. 56, p. 32653272.
Strauss J.V., Rooney A.D., Macdonald F.A., Brandon A.D., and Knoll A.H., 2014, 740 Ma vase-shaped microfossils from Yukon, Canada: implications for Neoproterozoic chronology and biostratigraphy: Geology, v. 42, p. 659662.
Tappan H., 1993, Tintinnids, in Lipps, J.H., ed., Fossil Prokaryotes and Protists: Boston, Blackwell Scientific Publications, p. 285303.
Tucker M.E., and Wright V.P., 1990, Carbonate Sedimentology: Oxford, John Wiley & Sons, 251 p.
Turner N.J., Black L.P., and Kamperman M., 1998, Dating of Neoproterozoic and Cambrian orogenies in Tasmania: Australian Journal of Earth Sciences, v. 45, p. 789806.
Urban H., Stribrny B., and Lippolt H.J., 1992, Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil: Economic Geology, v. 87, p. 13751392.
Valkanov A., 1970, Beitrag zur Kenntnis der Protozoen des Schwarzen Meeres: Zoologischer Anzeiger, v. 184, p. 241290.
Venkatachala B.S., and Kumar A., 1998, Fossil microbiota from the Vaishnodevi Limestone, Himalayan Foothills, Jammu: age and palaeoenvironmental implications: Geological Society of India, v. 52, p. 529536.
Vidal G., 1979, Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland: Grønlands Geologiske Undersøgelse, v. 134, p. 155.
Vidal G., and Moczydłowska M., 1995, The Neoproterozoic of Baltica—stratigraphy, palaeobiology and general geological evolution: Precambrian Research, v. 73, p. 197216.
Vidal G., and Siedlecka A., 1983, Planktonic, acid-resistant microfossils from the Upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, East Finnmark, northern Norway: Norges Geologiske Undersokelse Bulletin, v. 71, p. 4579.
Walde D.H.G., and Oliveira M.M., 1980, Substratos para a estratigrafia dos grupos Corumbá e Jacadigo na região de Corumbá,MS, in 31st Congresso Brasileiro de Geologia: Balneário de Camburiú, Sociedade Brasileira de Geologia, Resumos, Boletim 2, 446 p. [in Portuguese]
Wilkinson D.M., and Mitchell E.A., 2010, Testate amoebae and nutrient cycling with particular reference to soils: Geomicrobiology Journal, v. 27, p. 520533.
Xiao S., Shen B., Tang Q., Kaufman A.J., Yuan X., Li J., and Qian M., 2014, Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China: Precambrian Research, v. 246, p. 208225.
Zaine M.F., 1991, Analise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental. [Ph.D. thesis]: São Paulo, Universidade de São Paulo, 218 p. [in Portuguese with English abstract].
Zhang L., 1994, A new progress in research on vase-shaped microfossils from the Dengying Formation of Sinian in southern Shaanxi Province: Acta Geologica Gansu, v. 13, p. 18.
Zhang L., and Li Y., 1991, The Late Sinian vasiform microfossils of Ningqiang, Shaanxi Province: Northwest Geoscience, v. 1, p. 15.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 33
Total number of PDF views: 256 *
Loading metrics...

Abstract views

Total abstract views: 513 *
Loading metrics...

* Views captured on Cambridge Core between 9th May 2017 - 24th November 2017. This data will be updated every 24 hours.