Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T13:33:07.851Z Has data issue: false hasContentIssue false

Causality and Cope's Rule: evidence from the planktonic foraminifera

Published online by Cambridge University Press:  20 May 2016

Anthony J. Arnold
Affiliation:
Department of Geology, Florida State University, Tallahassee 32306
D. C. Kelly
Affiliation:
Department of Geology, Florida State University, Tallahassee 32306
W. C. Parker
Affiliation:
Department of Geology, Florida State University, Tallahassee 32306

Abstract

A literature-based compilation of phylogenetic relationships and biometric measurements of 342 Cenozoic planktonic foraminiferal species suggests that the group shows a net increase in size through the Cenozoic, thus appearing to follow Cope's Rule of phyletic size increase. However, when the data are corrected for size-related biases, they do not support the hypothesis that this apparent trend is driven by an organismal adaptive advantage of larger size.

When the planktonic foraminifera return to their “primitive” globigerine morphology during the Eocene-Oligocene transition, there is no indication of size-dependent origination or extinction; however, when the extinction signal is decomposed into pseudoextinctions and true lineage terminations, a differential pulse of pseudoextinction is observed among the smaller forms. This observation suggests that smaller bodied species, rather than surviving stressful times with static morphologies, may evolve their way through times of crisis and go on to found lineages which, by virtue of their initial small size, are stochastically likely to increase in mean size during subsequent diversification. Thus, one general explanation for Cope's Rule might be that smaller bodied species are more adaptively responsive due to their tendency to have shorter generation times. During times of stress, this adaptive responsiveness may give them an advantage that is correlated with, but causally unrelated to, their size.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berggren, W. A. 1977. Atlas of Paleogene planktonic foraminifera, p. 205299. In Ramsay, A. T. S. (ed.), Oceanic Micropaleontology. Volume 1. Academic Press, London.Google Scholar
Bijma, J., Faber, W. W. Jr., and Hemleben, C. 1990. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research, 20:95116.CrossRefGoogle Scholar
Bijma, J., Hemleben, C., Oberhansli, H., and Spindler, M. 1992. The effects of increased water fertility on tropical spinose planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research, 22:242256.Google Scholar
Blow, W. H. 1979. The Cainozoic Globigerinida, Volumes 1–3. E. J. Brill, Leiden, 1,413 p.CrossRefGoogle Scholar
Boersma, A., and Premoli Silva, I. 1983. Paleocene planktonic foraminiferal biogeography and the paleoceanography of the Atlantic Ocean. Micropaleontology, 29:355381.CrossRefGoogle Scholar
Boersma, A., and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography, 2:287331.Google Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low-latitude planktic foraminifera, p. 155262. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. D. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Bradshaw, J. S. 1957. Laboratory studies on the rate of growth of the foraminifer, “Streblus beccarii (Linne') var. tepida (Cushman).” Journal of Paleontology, 31:11381147.Google Scholar
Calder, W. A. 1984. Size, Function, and Life History. Harvard University Press, Cambridge, Massachusetts, 421 p.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology, 18:154168.CrossRefGoogle Scholar
Cope, E. D. 1896. The Primary Factors of Organic Evolution. Open Court Publishing Company, Chicago, 547 p.Google Scholar
Dial, K. P., and Marzluff, J. M. 1988. Are the smallest organisms the most diverse? Ecology, 69:16201624.CrossRefGoogle Scholar
Dial, K. P., and Marzluff, J. M. 1989. Nonrandom diversification within taxonomic assemblages. Systematic Zoology, 38:2637.CrossRefGoogle Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, reprinted 1958, Dover, New York, 291 p.CrossRefGoogle Scholar
Fordham, B. G. 1986. Miocene–Pliocene planktic foraminifers from D.S.D.P. Sites 208 and 77, and phylogeny and classification of Cenozoic species. Evolutionary Monographs, No. 6, University of Chicago, Chicago, 200 p.Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology, 62:319329.Google Scholar
Hallam, A. 1990. Biotic and abiotic factors in the evolution of early Mesozoic marine molluscs, p. 249269. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution, A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Hallock, P. 1985. Why are larger Foraminifera large? Paleobiology, 11:195208.CrossRefGoogle Scholar
Hallock, P., Premoli Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:4964.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York, 363 p.CrossRefGoogle Scholar
Keller, G., MacLeod, N., and Barrera, E. 1992. Eocene–Oligocene faunal turnover in planktonic foraminifera, and Antarctic glaciation, p. 218244. In Prothero, D. R. and Berggren, W. A. (eds.), Eocene–Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton.Google Scholar
Kennett, J. P., and Srintvasan, M. S. 1983. Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania, 265 p.Google Scholar
Lipps, J. H. 1986. Extinction dynamics in pelagic ecosystems, p. 87104. In Elliott, D. K. (ed.), Dynamics of Extinction. John Wiley and Sons, New York.Google Scholar
MacArthur, R. H., and MacArthur, J. W. 1961. On bird species diversity. Ecology, 42:594598.CrossRefGoogle Scholar
Martin, R. A. 1984. The evolution of cotton rat body mass, p. 179183. In Genoways, H. H. and Dawson, M. R. (eds.), Contributions to Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday. Special Publication 8, Carnegie Museum of Natural History, Pittsburgh.Google Scholar
Martin, R. A. 1992. Generic species richness and body mass in North American mammals: support for the inverse relationship of body size and speciation rate. Historical Biology, 6:7390.Google Scholar
McKinney, M. L. 1990a. Classifying and analysing evolutionary trends, p. 2858. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press, London.Google Scholar
McKinney, M. L. 1990b. Trends in body-size evolution, p. 75118. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press, London.Google Scholar
Miller, K. G. 1992. Middle Eocene to Oligocene stable isotopes, climate, and deep-water history: the terminal Eocene event?, p. 75118. In Prothero, D. R. and Berggren, W. A. (eds.), Eocene-Oligocene Climate and Biotic Evolution. Princeton University Press, Princeton.Google Scholar
Newell, N. D. 1949. Phyletic size increase—an important trend illustrated by fossil invertebrates. Evolution, 3:103124.Google Scholar
Norris, R. D. 1990. Iterative evolution in planktonic foraminifera. Unpubl. Ph.D. dissertation, Harvard University, Cambridge, Massachusetts, 281 p.Google Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology, 17:388399.Google Scholar
Odom, E. P. 1971. Fundamentals of Ecology. Saunders, Philadelphia, 574 p.Google Scholar
Pearson, P. N. 1992. Survivorship analysis of fossil taxa when real-time extinction rates vary: the Paleogene planktonic foraminifera. Paleobiology, 18:115131.Google Scholar
Premoli Silva, I., and Boersma, A. 1988. Atlantic Eocene planktonic foraminiferal historical biogeography, and paleohydrographic indices. Palaeogeography, Palaeoclimatology, Palaeoecology, 67:315356.Google Scholar
Rensch, B. 1959. Evolution Above the Species Level. Columbia University Press, New York, 419 p.CrossRefGoogle Scholar
Rosenheim, S. A., and Tabashnik, B. E. 1993. Generation time and evolution. Nature 365:791792.Google Scholar
Shackleton, N. J. 1986. Paleogene stable isotope events. Palaeogeography, Palaeoclimatology, Palaeoecology, 57:91102.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York, 237 p.Google Scholar
Stanley, S. M. 1973a. Effects of competition on rates of evolution, with special reference to bivalve molluscs and mammals. Systematic Zoology, 22:486506.CrossRefGoogle Scholar
Stanley, S. M. 1973b. An explanation for Cope's Rule. Evolution, 27:126.Google Scholar
Thompson, D'A. W. 1942. On Growth and Form, 2nd edition.Macmillan, New York, 1,116 p.Google Scholar
Toumarkine, M., and Luterbacher, H. 1985. Paleocene and Eocene planktic foraminifera, p. 87154. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. D. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Van Couvering, J. A., Aubry, M. P., Berggren, W. A., Bujak, J. P., and Wiesser, T. 1981. The terminal Eocene event and the Polish connection. Palaeogeography, Palaeoclimatology, and Palaeoecology, 36:321362.Google Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, 307 p.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Scientist, 66:694703.Google Scholar