Skip to main content Accessibility help
×
Home

Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before the Precambrian–Cambrian Boundary

  • Francis A. Macdonald (a1), Sara B. Pruss (a2) and Justin V. Strauss (a1)

Abstract

Here we describe large, complex trace fossils in the late Ediacaran Omkyk Member of the Zaris Formation, Nama Group, southern Namibia. The horizontal trace fossils are preserved on a number of talus blocks from a bedding plane of a cm-thick sandstone lens from a single stratigraphic horizon less than 100 m below an ash bed dated at 547.3 ± 0.7 Ma. The forms consist of overlapping U-shaped spreiten elements with parallel limbs surrounded by an outer tube. Individual U-shaped elements are 0.2 to 1 cm in diameter, the outer tube is less than 3 mm in diameter, and the forms as a whole range from 5 to 30 cm long and 3 to 10 cm wide. The specimens commonly show a change in direction and change in diameter. The morphology of these trace fossils is comparable to backfill structures, particularly specimens of Paleozoic Zoophycos from shallow water environments. Here we interpret these horizontal spreiten-burrows to record the grazing of the trace-maker on or below a textured organic surface. The identification of large late Ediacaran trace fossils is consistent with recent reports of backfilled horizontal burrows below the Precambrian–Cambrian boundary and is suggestive of the appearance of complex feeding habits prior to the Cambrian trace fossil explosion.

Copyright

References

Hide All
Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chemical Geology, 114:331345.
Aller, R. C., Madrid, V., Chistoserdov, A., Aller, J. Y., and Heilburn, C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record. Geochimica et Cosmochimica Acta, 74:46714692.
Amthor, J. E., Grotzinger, J. P., Schroeder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31:431434.
Bengtson, S. and Zhao, Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257:367369.
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. M. (eds.), Trace fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. Volume New York State Museum Bulletin 463.
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.
Bouougri, E. H. and Porada, H. 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences, 48:2007.
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., and Newall, M. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307:10971145.
Brasier, M. D., McIlroy, D., Liu, A. G., Antecliffe, J. B., and Menon, L. R. 2013. The oldest evidence of bioturbation on Earth: Comment. Geology, 41:e289e289.
Buatois, L. A., Almond, J., and Germs, G. J. B. 2013. Environmental tolerance and range offset of Treptichnus pedum: Implications for the recognation of the Ediacaran–Cambrian boundary. Geology, 41:519522.
Burns, S. J. and Matter, A. 1993. Carbon Isotopic record of the latest Proterozoic from Oman. Ecologae Geologicae Helvetiae, 86:595607.
Calver, C. R. 2000. Isotope stratigraphy of the Ediacaran (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100:121150.
Canfield, D. E. and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 106:81238127.
Carbone, C. and Narbonne, G. M. 2014. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. Journal of Paleontology, 88:309330.
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2012. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224:690701.
Cloud, P. E. Jr., Gustafson, L. B., and Watson, J. A. L. 1980. The works of living social insects as pseudofossils and the age of the oldest known metazoa. Science, 210:10131015.
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009 a. Large spinose microfossils in Ediacaran rocks as resting staes of early animals. Proceedings of the National Academy of Sciences, 106:65196524.
Cohen, P. A., Bradley, A. S., Knoll, A. H., Grotzinger, J. P., Jensen, S., Abelson, J., Hand, K., Love, G. D., Metz, J., McLoughlin, N., Meister, P., Shepard, R., Tice, M., and Wilson, J. P. 2009 b. Tubular compression fossils from the Ediacaran Nama Group, Namibia. Journal of Paleontology, 83:110122.
Condon, D. J., Zhu, M., Bowring, S. A., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic–Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. III (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.
Crimes, T. P. and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of Southwest Africa (Namibia). Journal of Paleontology, 56:890907.
Droser, M. L. and Bottjer, D. J. 1993. Trends and patterns of Phanerozoic ichnofabrics. Annual Review of Earth and Planetary Sciences, 21:205225.
Droser, M. L., Gehling, J. G., and Jensen, S. 2005. Ediacaran trace fossils: True and false, p. 125138. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Peabody Museum of Natural History, Yale University, New Haven, Connecticut.
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, 99:12, 57212,576.
Dzik, J. 2005. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion.” Paleobiology, 31:503521.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334:10911097.
Fedonkin, M. A. 1977. Precambrian–Cambrian ichnocoenoses of the East European Platform, p. 183194. In Crimes, T. P. and Harper, T. P. (eds.), Trace Fossils 2. Geological Journal Special Issue, Volume 9.
Fedonkin, M. A. and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96:196206.
Gehling, J. G. and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450.
Germs, G. J. B. 1972. The stratigraphy and paleontology of the lower Nama Group, South West Africa. Bulletin, University of Cape Town, Department of Geology, Chamber Mines Precambrian Research Unit 12, 250 p.
Germs, G. J. B. and Greese, P. G. 1991. The foreland basin of the Damara and Gariep Orogens in Namaqualand and southern Namibia: Stratigraphic correlations and basin dynamics. South African Journal of Geology, 94:159169.
Geyer, G. and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic–lower Cambrian) in Namibia and the Proterozoic–Cambrian boundary problem revisited. Beringeria Special Issue 2, p. 175202.
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.
Grotzinger, J. P., Fike, D. A., and Fischer, W. W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4:285292.
Grotzinger, J. P. and Miller, R. M. 2008. The Nama Group, p. 1322913272. In Miller, R. M. (ed.), The Geology of Namibia. Volume 2. Geological Survey of Namibia, Windhoek, Nambia.
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.
Higgins, J. A., Fischer, W. W., and Schrag, D. P. 2009. Oxygenation of the ocean and sediments: Consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284:2533.
Hua, H., Pratt, B. R., and Zhang, L.-Y. 2003. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18:454459.
Husson, J. M., Maloof, A. C., and Schoene, B. 2012. A syn-depositional age for Earth's deepest δ13C excursion required by isotope conglomerate tests. Terra Nova, 24:318325.
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: Patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Volume 27. Springer, New York, New York.
Jensen, S., Saylor, B. Z., Gehling, J. G., and Germs, G. J. B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology, 28:143146.
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.
Macdonald, F. A., Strauss, J. V., Sperling, E. A., Halverson, G. P., Narbonne, G. M., Johnston, D. T., Kunzmann, M., Schrag, D. P., and Higgins, J. A. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxidation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, doi: 10.1016/j.chemgeo.2013.05.032.
MacNaughton, R. B. and Narbonne, G. M. 1999. Evolution and eology of Neoproterozoic–lower Cambrian trace fossils, NW Canada. Palaios, 14:97115.
Martin, H. 1975. Structural and palaeogeographical evidence for an upper Palaeozoic sea between southern Africa and South America. Proceeding Papers IUGS 3rd Gondwana Symposium, Canberra, Australia, p. 3751.
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.
McIlroy, D. and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14:5872.
Meysman, F. J. R., Middelberg, J. J., and Heip, C. H. R. 2006. Bioturbation: A fresh look at Darwin's last idea. Trends in Ecology and Evolution, 21:688695.
Miller, M. F. 1991. Morphology and paleoenvironmental distribution of Paleozoic Spirophyton and Zoophycos: Implications for the Zoophycos ichnofacies. Palaios, 6:410425.
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwest Canada. Palaeontology, 33:945980.
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology, 71:953967.
Narbonne, G. M., Xiao, S., and Shields-Zhou, G. 2012. Ediacaran Period, p. 427449. In Gradstein, F., Ogg, J., Schmitz, M. D., and O. G. (eds.), Geologic Timescale 2012. Elsevier, Oxford.
Noffke, N., Knoll, A. H., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the upper Neoproterozoic Nama Group, Namibia. Palaios, 17:533544.
Pelechaty, S. M. 1998. Integrated chronostratigraphy of the Vendian System of Siberia: Implications for a global stratigraphy. Journal of the Geological Society of London, 155:957973.
Pell, S. D., McKirdy, D. M., Jansyn, J., and Jenkins, R. J. F. 1993. Ediacaran carbon isotope stratigraphy of South Australia—An initial study. Transactions of the Royal Society of South Australia, 117:153161.
Rogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K. E., Kochnev, B. B., Karlova, G., and Grazhdankin, D. V. 2012. The oldest evidence of bioturbation on Earth. Geology, 40:395398.
Sappenfield, A., Droser, M. L., and Gehling, J. G. 2011. Problematica, trace fossils, and tubes within the Ediacara member (South Australia): Redefining the Ediacaran trace fossil record one tube at a time. Journal of Paleontology, 85:256265.
Sappenfield, A., Droser, M. L., Kennedy, M. J., and McKenzie, R. 2012. The oldest Zoophycos and implications for early Cambrian deposit feeding. Geological Magazine, 149:11181123.
Schieber, J. 1999. Microbial mats in terrigenous clastics: The challenge of identification in the rock record. Palaios, 14:312.
Schmitz, M. D. 2012. Radiometric ages used in GTS2012, Appendix 2, p. 10451082. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), Geologic Timescale 2012. Elsevier.
Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T. 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339:540543.
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.
Seilacher, A. 2007. Trace Fossil Analysis. Springer, Berlin.
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.
Stollhofen, H., Stainstreet, I. G., Bangert, B., and Grill, H. 2000. Tuffs, tectonism and glacially related sea-level changes, Carboniferous–Permian, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 161:127150.
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrated Comparative Biology, 43:104113.
Wetzel, A. 1999. Tilting marks: A wave-produced tool mark resembling a trace fossil. Palaeogeography, Palaeoclimatology, Palaeoecology, 145:251254.
Wetzel, A. 2013. Tilting marks: Observations on tool marks resembling trace fossils and their morphological varieties. Sedimentary Geology, 288:6065.
Wilson, J. P., Grotzinger, J. P., Fischer, W. W., Hand, K. P., Jensen, S., Knoll, A. H., Abelson, J., Metz, J. M., McLoughlin, N., and Cohen, P. A. 2012. Deep-water incised valley deposits at the Ediacaran–Cambrian boundary in southern Namibia contain abundant treptichnus pedum. Palaios, 27:252273.
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.
Zhou, C. and Xiao, S. 2007. Ediacaran δ13C chemostatigraphy of South China. Chemical Geology, 237:107126.
Ziebis, W., Forster, S., Huettel, M., and Jorgensen, B. B. 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature, 382:619622.

Related content

Powered by UNSILO

Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before the Precambrian–Cambrian Boundary

  • Francis A. Macdonald (a1), Sara B. Pruss (a2) and Justin V. Strauss (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.