Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T17:53:05.168Z Has data issue: false hasContentIssue false

Limnopus trackways from the Conemaugh Group (Late Pennsylvanian), southern West Virginia

Published online by Cambridge University Press:  20 May 2016

Ronald L. Martino*
Affiliation:
Department of Geology, Marshall University, Huntington, West Virginia 25755

Abstract

Abundant and well-preserved tetrapod footprints have been discovered in the Glenshaw Formation (Lower Conemaugh Group) in Wayne County, West Virginia. The tracks occur along at least three horizons within a 30-cm-thick stratigraphic interval about 15 m (50 ft) above the Brush Creek Limestone; they are of Missourian age. The tracks are preserved mainly as casts on the underside of thin-bedded, ripple cross-laminated sandstones and less commonly as molds in intervening dark-gray shales. Associated body fossils include Spirorbis worm tubes and washed-in plant debris. Facies characteristics indicate the tracks were formed along the margins of an ephemeral lake in a flood basin setting adjacent to delta plain fluviodeltaic channel systems. Short-lived lacustrine conditions were likely to have resulted from a seasonal tropical to subtropical climate.

Most of the tracks can be assigned to the ichnogenus Limnopus, making them one of the earliest known occurrences. At least five trackways are discernible with an external width ranging from 320 to 400 mm. Limnopus glenshawensis, a new ichnospecies, is herein proposed and various morphologic and locomotion parameters are quantified. Mean values include stride/manus, 407 mm; stride/pes, 411 mm; oblique pace/manus, 313 mm; oblique pace/pes, 317 mm; pace angle/manus, 82.4 degrees; pace angle/pes, 80.5 degrees; glenoacetabular distance, 329 mm; manus length, 87.2 mm; manus width, 104.2 mm; pes length, 121.4 mm; pes width, 112.7 mm. The tracemaker was most likely an eryopoid amphibian with a total length of slightly over 1 m.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkle, T. Jr., Beissel, D. R., Larese, R. E., Nufer, E. B., Patchen, D. G., Smosna, R. A., Gillespie, W. H., Lund, R., Norton, C. W., and Pfefferkorn, H. W. 1979. The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States–West Virginia and Maryland. U.S. Geological Survey Professional Paper 1110-D, 35 p.Google Scholar
Baird, D. 1952. Revision of the Pennsylvanian and Permian footprints Limnopus, Allopus, and Baropus. Journal of Paleontology, 26:832840.Google Scholar
Baird, D. 1965. Footprints from the Cutler Formation, p. C47–C50. In Lewis, G. E. and Vaughn, P. P. (eds.), Early Permian Vertebrates from the Cutler Formation of the Placerville Area. Colorado. U.S. Geological Survey Professional Paper 503-C.Google Scholar
Bakker, R. T. 1986. The Dinosaur Heresies: New Theories Unlocking the Mystery of the Dinosaurs and Their Extinction. William Morrow and Co., Inc., New York, 481 p.Google Scholar
Carman, J. E. 1927. Fossil footprints from the Pennsylvanian system in Ohio. Geological Society of America Bulletin, 38:385396.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman and Co., New York, 698 p.Google Scholar
Cecil, C. B., Stanton, R. W., Neuzil, S. G., Dulong, F. T., Ruppert, L. F., and Pierce, B. S. 1985. Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (U.S.A.). International Journal of Coal Geology, 5:195230.Google Scholar
Chesnut, D. R. 1981. Marine zones of the Upper Carboniferous of eastern Kentucky, p. 5766. In Coal and Coal-Bearing Rocks of Eastern Kentucky. Geological Society of America. Coal Division Annual Field Trip, Kentucky Geological Survey.Google Scholar
Colbert, E. H. 1980. Evolution of the Vertebrates. John Wiley and Sons, Inc., New York, 510 p.Google Scholar
Connor, C. W., and Flores, R. M. 1978. Geologic map of the Louisa quadrangle, Kentucky–West Virginia. U.S. Geological Survey Geologic Quadrangle Map, GQ-1462.Google Scholar
Delage, A. 1912. Empreintes de pieds de grands quadrupèdes dans le Permian Inferieur de l'Hérault. Memoires de la Section Sciences, 4:221267.Google Scholar
Demathieu, G. 1970. Les empreintes de pas de vertebres du Trias de la bordure nord-est du Massif central. Cahiers de Paleontologie, Paris, 291 p.Google Scholar
Demathieu, G., and Sarjeant, W. A. S. 1987. Use of statistical methods in palaeoichnology, p. 55. In Leonardi, G. (ed.), Glossary and Manual of Tetrapod Footprint Palaeoichnology. Departamento Nacional da Producao Mineral, Brasilia, Brazil.Google Scholar
Dimichele, W. A., Phillips, T. L., and Peppers, R. A. 1985. The influence of climate and depositional environment on the distribution and evolution of Pennsylvanian coal-swamp plants, p. 223256. In Tiffney, B. H. (ed.), Geological Factors and the Evolution of Plants. Yale University Press, New Haven, Connecticut.Google Scholar
Ditmars, R. L. 1931. The Reptile Book, A Comprehensive, Popularized Work on the Structure and Habits of Turtles, Tortoises, Crocodilians, Lizards, and Snakes Which Inhabit the United States and Northern Mexico. Doubleday, Doran and Co., Garden City, New York, 472 p.Google Scholar
Donaldson, A. C. 1979. Depositional environments of the Upper Pennsylvanian Series, p. 123132. In Englund, K. J., Arndt, H. H., and Henry, T. W. (eds.), Proposed Pennsylvanian System Stratotype Virginia and West Virginia. American Geologic Institute, Selected Guidebook Series No. 1.Google Scholar
Donaldson, A. C., Presley, M. W., and Renton, J. J. 1979. Field Trip Guidebook for Carboniferous Coal Short Course. West Virginia Geological and Economic Survey Bulletin B-37-2, 174 p.Google Scholar
Donaldson, A. C., and Schumaker, R. C. 1979. Late Paleozoic molasse of the central Appalachians, p. 142. In Donaldson, A., Presley, M. W., and Renton, J. J. (eds.), Carboniferous Coal Guidebook. West Virginia Geological and Economic Survey, Bulletin B-37-3.Google Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. G., Okolo, S. A., and Pollard, J. E. 1985. Trace fossils and their occurrence in Silesian (mid-Carboniferous) deltaic sediments in the central Pennine Basin, p. 99149. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.Google Scholar
Fichter, J. 1983a. Tetrapodenfährten us dem saarpfälzischen Rotliegenden (?Ober-Karbon–Unter-Perm; Südwest-Deutschland). 1. Färhten der Gattungen Saurichnites, Limnopus, Amphisauroides, Protritonichnites, Gilmoreichnus, Hyloidichnus und Jacobiichnus. Mainzer Geowissenschaftliche Mittleilungen, 12:9121.Google Scholar
Fichter, J. 1983b. Untersuchungen an Fährten einheimischer Urodelen und Lacertilier, Teil II: Aktuopaläontologie-Quantitative Fährtenanalysen. Mainzer Naturwissenschaftliche Archiv, 21:2566.Google Scholar
Fonner, R. F., and Chappell, G. A., 1987. Geology along 1-64 Wayne County, West Virginia. West Virginia Geological and Economic Survey, Map WV-28.Google Scholar
Gand, G. 1985. Significations paléobiologique et stratigraphic de Limnopus zeilleri dans la partie nord du Bassin de Saint-Affrique (Aveyron, France). Geobios, 18:215227.Google Scholar
Gand, G. 1986. Interprétations paléontologique et paléoécologique de quatre niveaux à traces de vertébrés observés dans l'Autunien du Lodèvois (Herault). Géologie de la France, 2:155176.Google Scholar
Gand, G. 1988. Les traces de Vertébrés tétrapodes du Permien français (Paléontologie, Stratigraphie, Paléoenvironments). Thèse de Doctorat d'Etat ès Sciences Naturelles, Université de Bourgogne, 341 p.Google Scholar
Happ, S., and Alexander, H. 1934. Footprints from the Permian of West Virginia. Journal of Geology, 42:753755.Google Scholar
Haubold, H. 1971. Ichnia Amphibiorum et Reptiliorum Fossilium. Handbuch der Paläoherpetologie, Pt. 18. Fischer, Stuttgart, 124 p.Google Scholar
Haubold, H. 1984. Saurierfährten. Wittenberg Lutherstadt, Germany. Die Neue Brehm-Bucherei, 230 p.Google Scholar
Haubold, H., and Katzung, G. 1978. Paleoecology and paleoenvironments of tetrapod footprints from the Rotliegend (Lower Permian) of central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:307323.CrossRefGoogle Scholar
Haubold, H., and Sarjeant, W. A. S. 1973. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon: Stefan und Autun) von Shropshire und South Staffordshire, England. Zeitschrift fur geologische Weissenschaften, 1:895933.Google Scholar
Hayes, P. T., and Connor, C. W. 1982. Coal Geology of Adams, Blaine, Richardson, and Sitka quadrangles, Kentucky and Louisa quadrangle, Kentucky–West Virginia. U.S. Geological Survey Bulletin 1526, 68 p.Google Scholar
Henry, T. W., and Gordon, M. Jr. 1979. Late Devonian through Early Permian(?) invertebrate faunas in proposed Pennsylvanian System Stratotype area, p. 97104. In Englund, K. J., Arndt, H. H., and Henry, T. W. (eds.), Proposed Pennsylvanian System Stratotype, Virginia and West Virginia. American Geologic Institute Selected Guidebook Series 1.Google Scholar
Heyler, D., and Lessertisseur, J. 1963. Pistes de tétrapodes Permiens dans la région de Lodève (Hérault). Mémoires du Museum National d'Histoire Naturelle, Paris, II:125221.Google Scholar
Jake, T. R., and Blake, B. M. Jr. 1982. 300 million year old footprints found in Tucker County. Mountain State Geology, West Virginia Geological and Economic Survey, p. 2325.Google Scholar
King, A. T. 1845. Description of fossil footmarks found in the Carboniferous series in Westmoreland County, Pa. American Journal of Science, 48:343352.Google Scholar
Krebs, C. E., and Teets, D. D. 1913. Cabell, Wayne, and Lincoln Counties. West Virginia Geological Survey, County Report, 483 p.Google Scholar
Leonardi, G. 1987. Discussion of the terms and methods, p. 4351. In Leonardi, G. (ed.), Glossary and Manual of Tetrapod Footprint Palaeoichnology. Departamento Nacional da Produção Mineral, Brasilia, Brazil.Google Scholar
Lund, R. 1975. Vertebrate fossil zonation and correlation of the Dunkard Basin, p. 171182. In Barlow, J. A. (ed.), The Age of the Dunkard. Proceedings of the First I. C. White Memorial Symposium, West Virginia Geological and Economic Survey.Google Scholar
Maples, C. G., and Archer, A. W. 1989. The potential of Paleozoic nonmarine trace fossils for paleoecologic interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology, 73:185195.Google Scholar
Marsh, O. C. 1894. Footprints of vertebrates in the Coal Measures of Kansas. American Journal of Science, 48:8184.Google Scholar
Martino, R. L., Watson, M. B., Adkins, K., and Smith, G. A. 1985. Sedimentology and paleohydrology of the fluviodeltaic Conemaugh Group (Late Pennsylvanian) along the Big Sandy River, West Virginia–Kentucky. West Virginia Academy of Science Proceedings, Papers, 57:7990.Google Scholar
McClelland, S. W. 1988. Fossil footprints unearthed in eastern panhandle. Mountain State Geology, West Virginia Geological and Economic Survey, p. 1417.Google Scholar
Merrill, G. K. 1988. Marine transgression and syndepositional tectonics; Ames Member (Glenshaw Formation, Conemaugh Group, Upper Carboniferous) near Huntington, West Virginia. Southeastern Geology, 28:153156.Google Scholar
Mitchell, H. R. 1931. Fossil footprints from the Pennsylvanian of Ohio. Ohio Journal of Science, 31:500504.Google Scholar
Mitchell, H. R. 1933. Notes on another Pennsylvanian footprint from Ohio. Ohio Journal of Science, 33:4849.Google Scholar
Mossman, D. J., and Sargeant, W. A. S. 1983. The footprints of extinct animals. Scientific American, 248:7585.Google Scholar
Oliver, J. A. 1955. The Natural History of North American Amphibians and Reptiles. D. Van Nostrand Co., Inc., Princeton, New Jersey, 359 p.Google Scholar
Olson, E. C. 1975. Vertebrates and the biostratigraphic position of the Dunkard, p. 155165. In Barlow, J. A. (ed.), The Ages of the Dunkard. Proceedings of the First I. C. White Memorial Symposium, West Virginia Geological and Economic Survey.Google Scholar
Peabody, F. E. 1955. Taxonomy and the footprints of tetrapods. Journal of Paleontology, 29:915918.Google Scholar
Peabody, F. E. 1959. Trackways of living and fossil salamanders. University of California Publications in Zoology, 63(1), 72 p.Google Scholar
Reineck, H. E., and Singh, I. B. 1975. Depositional Sedimentary Environments. Springer-Verlag, New York, 439 p.Google Scholar
Schmidt, H. 1959. Die Cornberger Fährten im Rahmen der Vierfüssler-Entwicklung. Abhandlungen des hessischen Landesamtes für Bodenforschung, 28:1137.Google Scholar
Sharps, J. A. 1967. Geologic Map of the Fallsburg quadrangle, Kentucky–West Virginia, and the Prichard quadrangle in Kentucky. U.S. Geological Survey Geologic Quadrangle Map, GQ-584.Google Scholar
Tasch, P. 1980. Paleobiology of the Invertebrates. John Wiley and Sons, New York, 975 p.Google Scholar
Tevesz, M. J. S., and McCall, P. L. 1982. Geological significance of aquatic nonmarine trace fossils, p. 257288. In McCall, P. L. and Tevesz, M. J. S. (eds.), Animal–Sediment Relations. Plenum Press, New York.Google Scholar
Tilton, J. L. 1926. Permian vertebrates from West Virginia. Geological Society of America Bulletin, 37:385396.Google Scholar
Tilton, J. L. 1931. Permian vertebrate tracks in West Virginia. Geological Society of America Bulletin, 42:547556.Google Scholar
Vaughn, P. P. 1958. On the geologic range of the labyrinthodont amphibian Eryops. Journal of Paleontology, 32:918922.Google Scholar