Skip to main content

Paleoecology of an Upper Ordovician submarine cave-dwelling bryozoan fauna and its exposed equivalents in northern Kentucky, USA

  • Caroline J. Buttler (a1) and Mark A. Wilson (a2)

A bryozoan-dominated fauna that inhabited small caves underneath a carbonate hardground is here described from the Corryville Formation (Upper Ordovician, Katian) exposed near Washington, Mason County, Kentucky, USA. The dominant bryozoan, Stigmatella personata (a trepostome), is found both growing downwards from the cave ceilings and upwards on the exposed hardground surface above. Another trepostome, Monticulipora, is a minor component of the cave fauna. There are few discernible anatomical differences between the bryozoan colonies that grew upwards in presumably well-lit waters and those that grew downwards in the gloomy caves. The pendant, cave-dwelling S. personata in some cases appears to have longer zooecial tubes than its exposed equivalent. The colonies of S. personata are rounded mounds with multiple layers formed by self-overgrowth. The overgrowths in both downward and upward growing forms are marked by thin layers of sediment infilling the upper zooecial chambers in the older portion of the colony. We suggest that biofilms developed on patches of the colony where the zooids had died. Sediment adhered to these surfaces and the colony then overgrew the patches, trapping sediment within the skeleton. The bryozoan zoaria and the carbonate hardground are extensively bored by the cylindrical ichnogenus Trypanites that occasionally contain cylindrical calcite-filled tubes similar to “ghosts” of organic materials. Bioclaustrations are present in some of the bryozoan skeletons. This cave fauna is one of few submarine examples known from the Paleozoic. It supports the hypothesis that early cave-dwelling organisms were little differentiated from their exposed counterparts.

Hide All
Boardman, R.S., 1999, Indications of polypides in feeding zooids and polymorphs in Lower Paleozoic Trepostomata (Bryozoa): Journal of Paleontology, v. 73, p. 803815.
Boardman, R.S., and Cheetham, A.H., 1983, Glossary of morphologic terms, in Robison, R.A., ed., Treatise on Invertebrate Paleontology, Pt. G, Bryozoa, Revised: Boulder, Colorado and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. G304G320.
Borg, F., 1926, Studies on Recent cyclostomatous Bryozoa: Zoologiska Bidrag från Uppsala, v. 10, p. 181507.
Buatois, L.A., Mángano, M.G., Olea, R.A., and Wilson, M.A., 2016, Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Ordovician Biodiversification Event: Proceedings of the National Academy of Sciences, v. 113, p. 69456948.
Cuffey, R.J., 1998, The Maysville bryozoan reef mounds in the Grant Lake Limestone (Upper Ordovician) of north-central Kentucky, in Davis, A., and Cuffey, R.J., eds.., Sampling the layer cake that isn’t: the stratigraphy and paleontology of the type-Cincinnatian: Ohio Department of Natural Resources Guidebook v. 13, p. 3844.
Cummings, E.R, and Galloway, J.J., 1915, Studies of the morphology and histology of the Trepostomata or Monticuliporids: Proceedings of the Paleontological Society, v. 26, p. 349374.
Dick, M.W., 1984, Bryozoan behavior in relation to autocleaning in Holoporella brunnea (Hincks): Northwest Science, v. 58, p. 195207.
Dyer, W.S., 1925, The stratigraphy and paleontology of Toronto and vicinity. Part V. The paleontology of the Credit River section: Report of Ontario Department of Mines, v. 32, p. 4788.
Ehrenberg, C.G., 1831, Symbolae Physicae, seu Icones et descptiones Corporum Naturalium novorum aut minus cognitorum, quae ex itineribus per Libyam, Aegiptum, Nubiam, Dongalaam, Syriam, Arabiam et Habessiniam, studia annis 1820–25, redirent. – Pars Zoologica, 4, Animalia Evertebrata exclusis Insectis: Berolini, Mittler, 10 pls.
Ernst, A., Taylor, P.D., and Bohatý, J., 2014, A new Middle Devonian cystoporate bryozoan from Germany containing a new symbiont bioclaustration: Acta Palaeontologica Polonica, v. 59, p. 173183.
Fritz, M.A., 1973, Redescription of type specimens of bryozoan Stigmatella from the Upper Ordovician of the Toronto Region, Ontario: Life Sciences Contribution, Royal Ontario: Museum, v. 87, p. 131.
Gerdes, G., Kaselowsky, J., Lauer, A., Mawatari, S.F., and Scholz, J., 2005, Taxonomic composition and structure of bryozoan-associated biofilms from Japan and New Zealand, in Moyano G.H.I., Cancino, J.M., and Wyse Jackson, P.N., eds., Bryozoan Studies 2004: London, A.A. Balkema Publishers, p. 6982.
Harmelin, J.-G., 1986, Patterns in the distribution of bryozoans in the Mediterranean marine caves: Stygologia, v. 2, p. 1025.
Harmelin, J.-G., 1997, Diversity of bryozoans in a Mediterranean sublittoral cave with bathyal-like conditions: role of dispersal processes and local factors: Marine Ecology Progress Series, v. 153, p. 139152.
Harmelin, J.-G., 2000, Ecology of cave and cavity dwelling bryozoans, in Herrera Cubilla, A., and Jackson, J.B.C., eds., Proceedings of the 11th International Bryozoology Association Conference: Balboa, Republic of Panama, Smithsonian Tropical Research Institute, p. 38–55.
Hayward, P.J., and Ryland, J.S., 1985, Cyclostome bryozoans: keys and notes for the identification of the species: Synopses of the British fauna (New series), v. 34, p. 147. [London, Published for the Linnean Society of London and the Estuarine and Brackish-Water Sciences Association by E.J. Brill/W. Backhuys].
Holland, S.M., 1993, Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area: Geological Society of America Bulletin, v. 105, p. 306322.
Holland, S.M., and Patzkowsky, M.E., 2007, Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA: Palaios, v. 22, p. 392407.
Key, M.M. Jr., Wyse Jackson, P.N., Miller, K.E., and Patterson, W.P., 2008, A stable isotope test for the origin of fossil brown bodies in trepostome bryozoans from the Ordovician of Estonia, in Hageman, S.J., Key, M.M., Jr, and Winston, J.E., eds., Bryozoan Studies 2007: Martinsville, Virginia, Virginia Museum of Natural History Special Publication no. 15, p. 7584.
Kobluk, D.R., 1981, The record of cavity-dwelling (coelobiontic) organisms in the Paleozoic: Canadian Journal of Earth Sciences, v. 18, p. 181190.
Lev, S.M., Key, M.M. Jr., and Lighthart., A., 1993, A paleobiologic test for diastems using the internal stratigraphy of trepostome bryozoans: Journal of the Pennsylvania Academy of Science, v. 67, p. 3237.
Lidgard, S., 1981, Water flow, feeding, and colony form in an encrusting cheilostome, in Larwood, G.P., and Nielsen, C., eds., Recent and Fossil Bryozoa: Fredensborg, Denmark, Olsen and Olsen, p. 135142.
Lidgard, S., 2008, Predation on marine bryozoan colonies: taxa, traits and trophic groups: Marine Ecology Progress Series, v. 359, p. 117131.
Ma, J.-Y., Buttler, C.J., and Taylor, P.D., 2014, Cladistic analysis of the ‘trepostome’ Suborder Esthonioporina and the systematics of Palaeozoic bryozoans: Studi Trentini di Scienze Naturali, v. 94, p. 153161.
Mägdefrau, K., 1932, Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena: Paläontologische Zeitschrift, v. 14, p. 150160.
McKinney, F.K., 2009, Bryozoan-hydroid symbiosis and a new ichnogenus: Caupokeras: Ichnos, v. 16, p. 193201.
Palmer, T.J., 1982, Cambrian to Cretaceous changes in hardground communities: Lethaia, v. 15, p. 309323.
Palmer, T.J., and Fürsich, F.T., 1974, The ecology of a Middle Jurassic hardground and crevice fauna: Palaeontology, v. 17, p. 507524.
Palmer, T.J., and Wilson, M.A., 1988, Parasitism of Ordovician bryozoans and the origin of pseudoborings: Palaeontology, v. 31, p. 939949.
Palmer, T.J., and Wilson, M.A., 1990, Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe: Terra Nova, v. 2, p. 142147.
Patzkowsky, M.E., and Holland, S.M., 1996, Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States, in Witzke, B.J., Ludvigsen, G.A., and Day, J.E., eds., Paleozoic Sequence Stratigraphy: Views from the North American Craton: Geological Society of America Special Paper, Boulder, Colorado, v. 306, p. 131–142.
Rosso, A., Sanfilippo, R., Taddei Ruggiero, E., and Di Martino, E., 2013, Faunas and ecological groups of Serpuloidea, Bryozoa and Brachiopoda from submarine caves in Sicily (Mediterranean Sea): Bollettino della Società Paleontologica Italiana, v. 52, p. 167176.
Rosso, A., Sanfilippo, R., Ruggieri, R., Maniscalco, R., and Vertino, A., 2015, Exceptional record of submarine cave communities from the Pleistocene of Sicily (Italy): Lethaia, v. 48, p. 133144.
Suárez Andrés, J.L., 2014, Bioclaustration in Devonian fenestrate bryozoans. The ichnogenus Caupokeras McKinney, 2009: Spanish Journal of Palaeontology, v. 29, p. 514.
Tapanila, L., 2005, Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence: Lethaia, v. 38, p. 8999.
Taylor, P.D., 1990, Preservation of soft-bodied and other organisms by bioimmuration—a review: Palaeontology, v. 33, p. 117.
Taylor, P.D., and Palmer, T.J., 1994, Submarine caves in a Jurassic reef (La Rochelle, France) and the evolution of cave biotas: Naturwissenschaften, v. 81, p. 357360.
Taylor, P.D., and Wilson, M.A., 2003, Palaeoecology and evolution of marine hard substrate communities: Earth-Science Reviews, v. 62, p. 1103.
Ulrich, E.O., 1882, American Palaeozoic Bryozoa: The Journal of the Cincinnati Society of Natural History, v. 5, p. 121175, 233–257.
Ulrich, E.O., 1890, Part II. Palaeontology of Illinois. Section VI. Palæozoic Bryozoa: Report of the Geological Survey of Illinois, v. 8, p. 283688.
Ulrich, E.O., and Bassler, R.S., 1904, A revision of Paleozoic Bryozoa Part II: Smithsonian Miscellaneous Collections, v. 47, p. 1555.
Utgaard, J., and Perry, T.G., 1964, Trepostomatous bryozoan fauna of the upper part of the Whitewater Formation (Cincinnatian) of eastern Indiana and western Ohio: Indiana Geological Survey Bulletin, v. 33, p. 1111.
Vinn, O., Wilson, M.A., Mõtus, M.-A., and Toom, U., 2014, The earliest bryozoan parasite: Middle Ordovician (Darriwilian) of Osmussaar Island, Estonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 414, p. 129132.
Vogel, K., and Brett, C.E., 2009, Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: the early history of light-related microendolithic zonation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 281, p. 124.
Wilson, M.A., 1998, Succession in a Jurassic marine cavity community and the evolution of cryptic marine faunas: Geology, v. 26, p. 379381.
Wilson, M.A., and Palmer, T.J., 1992, Hardgrounds and hardground faunas: University of Wales, Aberystwyth, Institute of Earth Studies Publications, v. 9, p. 1131.
Wilson, M.A., and Palmer, T.J., 2006, Patterns and processes in the Ordovician bioerosion revolution: Ichnos, v. 13, p. 109112.
Wyse Jackson, P.N., and Key, M.M. Jr., 2007, Borings in trepostome bryozoans from the Ordovician of Estonia: two ichnogenera produced by a single maker, a case of host morphology control: Lethaia, v. 40, p. 237252.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed