Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T09:21:39.342Z Has data issue: false hasContentIssue false

Reptilian coprolites in the Eocene of central Patagonia, Argentina

Published online by Cambridge University Press:  20 May 2016

J. Marcelo Krause
Affiliation:
CONICET, Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, Trelew 9100, Chubut, Argentina,
Carlos I. Piña
Affiliation:
Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción-CONICET, Dr. Materi y España. Diamante 3105, Entre Ríos, Argentina, Facultad de Ciencias y Tecnología UAdER/Facultad de Ciencias de la Alimentación UNER

Abstract

Biogenic structures, herein interpreted as coprolites, were recorded in the ?upper Paleocene–Eocene Las Flores Formation, southeast Argentina. The coprolite origin is supported by several features, such as recurrent extrusive external morphology, longitudinal wrinkles, flattening of the ventral side, concentric and radial cracks, cryptocrystalline groundmass, and a phosphatic composition. A detailed comparative study with modern fecal masses, based on morphology, surface texture, micromorphology, mineralogical and chemical composition, suggest a crocodylian as the most probable producer, an interpretation also supported by the Patagonian paleontological record. This discovery, the first record on coprolites from Central Patagonia, provides new paleoenvironmental and paleoecological information for the studied successions.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. R. 1974. The marine crocodile (Crocodylus porosus) from Parape Eastern Caroline Islands, with notes on food habits of crocodiles from the Palau Archipelago. Copeia, 2:553.Google Scholar
Ameghino, F. 1899. Sinopsis Geo1ógico-Paleontológica. Suplementos (adiciones y correcciones). La Plata, 1:113.Google Scholar
Amstutz, G. C. 1958. Coprolites: a review of the literature and study of specimens from Southern Washington. Journal of Sedimentary Petrology, 28:498508.Google Scholar
Andrews, P. R., Axelsson, M., Franklin, C., and Holmgren, S. 2000. The emetic reflex in a reptile (Crocodylus porosus). The Journal of Experimental Biology, 203:16251632.Google Scholar
Ash, S. R. 1978. Coprolites, p. 6973. InAsh, S. R.(ed.), Geology, Paleontology and Paleoecology of a Late Triassic lake, Western New Mexico. Brigham Young University Geology Studies, 95 p.Google Scholar
Báez, A. M. and Gasparini, Z. 1977. Orígenes y evolución de los anfibios y reptiles del Cenozoico de América del Sur. Acta Geológica Lilloana, 14:149232.Google Scholar
Bona, P. 2007. Una nueva especie de Eocaiman Simpson (Crocodylia, Alligatoridae) del Paleoceno Inferior de Patagonia. Ameghiniana, 44:435445.Google Scholar
Bonin, F., Devaux, B., and Dupré, A. 2006. Turtles of the World. The Johns Hopkins University Press, Baltimore, 416 p.CrossRefGoogle Scholar
Borteiro, C., Gutiérrez, F., Tedros, M., and Kolenc, F. 2008. Food habits of the Broad-snouted Caiman (Caiman latirostris: Crocodylia, Alligatoridae) in northwestern Uruguay. Studies on Neotropical Fauna and Environment, 1:16.Google Scholar
Brea, M., Bellosi, E., and Krause, M. 2009. Taxaceoxylon katuatenkum sp. nov. en la Formación Koluel-Kaike (Eoceno inferior-medio), Chubut, Argentina: un componente de los bosques subtropicales paleógenos de Patagonia. Ameghiniana, 46:127140.Google Scholar
Brochu, C. A. 2003. Phylogenetic approaches toward Crocodylian history. Annual Review of Earth and Planetary Sciences, 31:357397.Google Scholar
Broughton, P. L., Simpson, F., and Whitaker, S. H. 1978. Late Cretaceous coprolites from Western Canada. Palaeontology, 21:443453.Google Scholar
Casas-Andreu, G. and Barrios Quiroz, G. 2003. Hábitos alimenticios de Crocodylus acutus (Reptilia: Crocodylidae) determinados por el análisis de sus excretas en la costa de Jalisco, México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 74:3542.Google Scholar
Chame, M. 2003. Terrestrial mammal feces: a morphometric summary and description. Memórias do Instituto Oswaldo Cruz, 98:7194.Google Scholar
Colbert, E. H. 1946. Sebecus, representative of a peculiar suborder of fossil crocodilia from Patagonia. Bulletin of the American Museum of Natural History, 87:217270.Google Scholar
Dandrifosse, G. 1974. Digestion in reptiles, p. 249275. InFlorkin, M. and Scheer, B. T., (eds.), Chemical Zoology, 9.Google Scholar
de la Fuente, M. S. and Bona, P. 2002. Una nueva especie del género Hydomedusa Wagler (Pleurodira, Chelidae) del Paleógeno de Patagonia. Ameghiniana, 39:7783.Google Scholar
Edwards, P. D. 1973. Qualitative X-ray diffraction and X-ray fluorescence analysis of some Oligocene coprolites. Contributions to Geology, University of Wyoming, 12:25.Google Scholar
Edwards, P. D. and Yatkola, D. 1974. Coprolites of White River (Oligocene) carnivorous mammals: origin and paleoecological significance. Contributions to Geology, University of Wyoming, 13:6773.Google Scholar
Eriksson, M. E., Lindgren, J., Chin, K., and Månsby, U. 2011. Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia, 44:455468.CrossRefGoogle Scholar
Farlow, J. O., Chin, K., Argast, A., and Poppy, S. 2010. Coprolites from the Pipe Creek sinkhole (late Neogene, Grant County, Indiana, U.S.A). Journal of Vertebrate Paleontology, 30:959969.CrossRefGoogle Scholar
Farmer, C. G., Uriona, T. J., Olsen, D. B., Steenblik, M., and Sanders, K. 2008. The right-to-left shunt of crocodilians serves digestion. Physiological and Biochemical Zoology, 81:125137.Google Scholar
Fisher, D. C. 1981. Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth. Paleobiology, 7:261275.Google Scholar
Gans, C. 1952. The functional morphology of the egg-eating adaptation in the snake genus Dasypeltis. Zoologica, 37:209244.Google Scholar
Gasparini, Z. 1984. New Tertiary Sebecosuchia (Crocodylia: Mesosuchia) from Argentina. Journal of Vertebrate Paleontology, 4:8595.Google Scholar
Gasparini, Z. B. and Báez, A. M. 1975. Aportes al conocimiento de la herpetofauna terciaria de la Argentina. 1° Congreso Argentino de Paleontología y Bioestratigrafía, 2:377415.Google Scholar
Grigg, G. and Gans, C. 1993. Morphology and physiology of the Crocodylia, p. 326343. InGlasby, C. G., Ross, G. J. B., and Beesley, P. L.(eds.), Fauna of Australia, 2A (Amphibia and Reptilia). AGPS Canberra, 439 p.Google Scholar
Halfpenny, J. C. and Bruchac, J. 2002. Scats and tracks of the Southeast. A field guide to the signs of seventy wildlife species. Globe Pequot Press, Connecticut, 149 p.Google Scholar
Häntzschel, W., El-Baz, F., and Amstutz, G. C. 1968. Coprolites, an annotated bibliography. Memoirs of the Geological Society of America, 108:1132.Google Scholar
Harrell, S. D. and Schwimmer, D. R. 2010. Coprolites of Deinosuchus and other crocodylians from the Upper Cretaceous of Western Georgia, U.S.A. New Mexico Museum of Natural History and Science Bulletin, 51:209213.Google Scholar
Hollocher, K. T., Alcober, O. A., Colombi, C. E., and Hollocher, T. C. 2005. Carnivore coprolites from the Upper Triassic Ischigualasto Formation, Argentina: chemistry, mineralogy, and evidence for rapid initial mineralization. Palaios, 20:5163.Google Scholar
Hollocher, K. T., Hollocher, T. C., and Keith Rigby, J. 2010. A phosphatic coprolite lacking diagenetic permineralization from the Upper Cretaceous Hell Creek Formation, Northeastern Montana: importance of dietary calcium phosphate in preservation. Palaios, 25:132140.Google Scholar
Hunt, A. P., Chin, K., and Lockley, M. G. 1994. The palaeobiology of vertebrate coprolites, p. 221240. InDonovan, S. K.(ed.), The Palaeobiology of Trace Fossil. Wiley, Chichester, U.K.Google Scholar
Jepsen, G. L. 1963. Eocene vertebrates, coprolites, and plants in the Golden Valley Formation of Western North Dakota. Bulletin of the Geological Society of America, 74:673684.Google Scholar
Krause, J. M., Bellosi, E. S., and Raigemborn, M. S. 2010. Lateritized tephric palaeosols from Central Patagonia, Argentina: a southern high-latitude archive of Palaeogene global greenhouse conditions. Sedimentology, 57:17211749.Google Scholar
Kumar, V. V., Choudhury, B. C., and Soni, V. C. 1995. Dietary habits of the Mugger (Crocodylus palustris) in Andhra Pradesh, South India. Hamadryad, 20:812.Google Scholar
Legarreta, L. and Uliana, M. A. 1994. Asociaciones de fósiles y hiatos en el Supracretácico-Neógeno de Patagonia: una perspectiva estratigráfico-secuencial. Ameghiniana, 31:257281.Google Scholar
Lienbenberg, L. 2000. Tracks and tracking in Southern Africa. Struik Publishers, Cape Town, 176 p.Google Scholar
Marcus, L. V. 1981. Veterinary biology and medicine of captive amphibians and reptiles. Lea and Febiger, Philadelphia. 239 p.Google Scholar
Matley, C. A. 1941. The coprolites of Pijdura. Central Provinces. Records of the Geological Survey of India, 74:535547.Google Scholar
Milàn, J. 2010. Coprolites from the Danian Limestone (lower Paleocene) of Faxe Quarry, Denmark. New Mexico Museum of Natural History and Science Bulletin, 51:215218.Google Scholar
Milàn, J. and Hedegaard, R. 2010. Interspecific variation in tracks and trackways from extant crocodylians. New Mexico Museum of Natural History and Science Bulletin, 51:1529.Google Scholar
Molina, F. B. 1991. Observações sobre os hábitos e o comportamento alimentar de Phrynops geoffroanus (Schweigger, 1812) em cativeiro (Reptilia, Testudines, Chelidae). Revista Brasileira de Zoologia, 7:319326.Google Scholar
Nobre, P. H., Carvalho, I. S., Vasconcellos, F. M., and Souto, P. R. 2008. Feeding behavior of the Gondwanic Crocodylomorpha Mariliasuchus amarali from the Upper Cretaceous Bauru Basin, Brazil. Gondwana Research, 13:139145.Google Scholar
Palis, J. G. 1989. Alligator mississippiensis (American Alligator). Foraging behavior. Herpetological Review, 20:69.Google Scholar
Parris, D. C. and Holman, J. A. 1978. An Oligocene snake from a coprolite. Herpetologica, 34:258264.Google Scholar
Raigemborn, M. S., Brea, M., Zucol, A., and Matheos, S. 2009. Early Paleogene climatic conditions at mid latitudes in South America: mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geologica Acta, 7:125145.Google Scholar
Raigemborn, M. S., Krause, J. M., Bellosi, E. S., and Matheos, S. D. 2010. Redefinición estratigráfica del Grupo Río Chico (Paleógeno inferior), en el norte de la cuenca del Golfo San Jorge, Chubut, Argentina. Revista de la Asociación Geológica Argentina, 67:239256.Google Scholar
, G., Bellosi, E., Heizler, M., Vilas, J., Madden, R., Carlini, A., Kay, R., and Vucetich, M. 2010. Geochronology for the Sarmiento Formation at Gran Barranca, p. 4659. InMadden, R., Carlini, A., Vucetich, M., Kay, R., and R. (eds.), The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge.Google Scholar
Retallack, G. 1984. Completeness of the rock and fossil record: some estimates using fossils soils. Paleobiology, 10:5978.Google Scholar
Sawyer, G. T. 1981. A study of crocodilian coprolites from Wannagan Creek Quarry. Scientific Publications of the Science Museum of Minnesota, New Series, 5:129.Google Scholar
Simoncini, M. S., Piña, C. I., and Siroski, P. 2009. Clutch size of Caiman latirostris (Crocodylia: Alligatoridae) varies on a latitudinal gradient. North-Western Journal of Zoology, 5:191196.Google Scholar
Simpson, G. G. 1933a. A new crocodilian form the Notostylops beds of Patagonia. American Museum Novitates, 623:19.Google Scholar
Simpson, G. G. 1933b. A new fossil snake from the Notostylops beds of Patagonia. Bulletin of the American Museum of Natural History, 67:122.Google Scholar
Simpson, G. G. 1937. New reptiles from the Eocene of South America. American Museum Novitates, 927:13.Google Scholar
Skoczylas, R. 1970. Influence of temperature on gastric digestion in the grass snake, Natrix natrix L. Comparative Biochemistry and Physiology, 33:793796.Google Scholar
Skoczylas, R. 1978. Physiology of the digestive tract, p. 589717. InGans, C. and Gans, K. A.(eds.), Biology of the Reptilia 8. Academic Press, London.Google Scholar
Souto, P. R. F. 2010. Crocodylomorph coprolites from the Bauru Basin, Upper Cretaceous, Brazil. Bulletin of the New Mexico Museum of Natural History and Science, 51:201208.Google Scholar
Tauber, A. A., Palacios, M. E., and Cardozo, S. A. 2006a. Evidencias de interacción entre depredadores carroñeros y presas del Mioceno temprano-medio, de la Patagonia Austral. 9° Congreso Argentino de Paleontología y Bioestratigrafía, 1:271.Google Scholar
Tauber, A. A., Palacios, M. E., and Cardozo, S. A. 2006b. Coprolitos de la Formación Santa Cruz (Mioceno inferior-medio), Patagonia, República Argentina. 9° Congreso Argentino de Paleontología y Bioestratigrafía, 1:294.Google Scholar
Thorbjarnarson, J. B. 1988. The status and ecology of the American crocodile in Haiti. Bulletin of the Florida State Museum of Biological Science, 33:186.Google Scholar
Thulborn, R. A. 1991. Morphology, preservation and palaeobiological significance of dinosaur coprolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:341366.Google Scholar
Verde, M. and Ubilla, M. 2002. Mammalian Carnivore Coprolites from the Sopas Formation (Upper Pleistocene, Lujanian Stage), Uruguay. Ichnos, 9:7780.Google Scholar
Vogeltanz, R. 1965. Austrocknungsstrukturen bei koprolithen. Neues Jahrbuch fiir Geologie und Palliontologie Monatshefte, 3:362371.Google Scholar
Webb, G. J., Manolis, C., and Buckworth, R. 1983. Crocodylus johnstoni in the McKinlay River area, N. T. I. Variation in the diet, and a new method of assessing the relative importance of prey. Australian Journal of Zoology, 30:877899.Google Scholar
Young, C. C. 1964. New fossil crocodiles from China. Vertebrata Palasiatica, 8:190208.Google Scholar
Zangerl, R. E. and Richardson, E. S. 1963. The paleoecological history of two Pennsylvanian black shales. Fieldiana Geological Memoirs, 4:1532.Google Scholar