Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-2rjgt Total loading time: 0.227 Render date: 2022-12-09T23:36:50.701Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Straight and linearly tapered capillaries produced by femtosecond laser micromachining

Published online by Cambridge University Press:  02 February 2012

S. M. WIGGINS
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
M. P. REIJNDERS
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk) TMC Physics, Flight Forum 107, 5657 DC Eindhoven, The Netherlands
S. ABUAZOUM
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
K. HART
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
G. VIEUX
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
G. H. WELSH
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
R. C. ISSAC
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
X. YANG
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
D. R. JONES
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)
D. A. JAROSZYNSKI
Affiliation:
Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (mark.wiggins@strath.ac.uk)

Abstract

Gas-filled capillary discharge waveguides are a commonly employed medium in laser–plasma interaction applications, such as the laser wakefield accelerator, because they can simultaneously guide high-power laser pulses while acting as the medium for acceleration. In this paper, the production of both straight and linearly tapered capillaries using a femtosecond laser micromachining technique is presented. A tapered capillary is shown to possess a smooth variation in diameter (from 305 μm to 183 μm) along its entire 40 mm length, which would lead to a longitudinal plasma density gradient, thereby dramatically improving the laser–plasma interaction efficiency in applications. Efficient guiding with up to 82% energy transmission of the fundamental Gaussian mode of a low intensity, 50 fs duration laser pulse is shown for both types of capillary waveguide.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1997 IEEE J. Quantum Electron. 33, 1879.CrossRefGoogle Scholar
[2]Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[3]Joshi, C. 2007 Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
[4]Leemans, W. P., Nagler, B, Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Nature Phys. 2, 696.CrossRefGoogle Scholar
[5]Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M., Welsh, G. H., Anania, M. P., Maneuski, D., Montgomery, R., Smith, G., Hoek, M., Hamilton, D. J., Lemos, N. R. C., Symes, D., Rajeev, P. P., O'Shea, V., Dias, J. M. and Jaroszynski, D. A. 2011 Nature Phys. 7, 867.CrossRefGoogle Scholar
[6]Malkin, V. M., Shvets, G. and Fisch, N. J. 2000 Phys. Rev. Lett. 84, 1208.CrossRefGoogle Scholar
[7]Ersfeld, B. and Jaroszynski, D. A. 2005 Phys. Rev. Lett. 95, 165002.CrossRefGoogle Scholar
[8]Vieux, G., Lyachev, A., Yang, X., Ersfeld, B., Farmer, J. P., Brunetti, E., Issac, R. C., Raj, G., Welsh, G. H., Wiggins, S. M. and Jaroszynski, D. A. 2011 New J. Phys. 13, 063042.CrossRefGoogle Scholar
[9]Malka, V., Faure, J., Gauduel, Y. A., Lefebvre, E., Rousse, A. and Phuoc, K. T. 2008 Nature Phys. 4 447.CrossRefGoogle Scholar
[10]Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. and Leemans, W. P. 2010 Phys. Rev. ST Accel. Beams 13, 101301.CrossRefGoogle Scholar
[11]Strickland, D. and Mourou, G. 1985 Opt. Commun. 56, 219.CrossRefGoogle Scholar
[12]Ross, I. N., Matousek, P., Towrie, M., Langley, A. J. and Collier, J. L. 1997 Opt. Commun. 144, 125.CrossRefGoogle Scholar
[13]Mourou, G. A., Tajima, T. and Bulanov, S. V. 2006 Rev. Mod. Phys. 78, 309.CrossRefGoogle Scholar
[14]Spence, D. J. and Hooker, S. M. 2001 Phys. Rev. E 63 015401.CrossRefGoogle Scholar
[15]Gattass, R. R. and Mazur, E. 2008 Nature Photonics 2, 219.CrossRefGoogle Scholar
[16]Jaroszynski, D. A., Bingham, R., Brunetti, E., Ersfeld, B., Gallacher, J., van der Geer, B., Issac, R., Jamison, S. P., Jones, D., de Loos, M., Lyachev, A., Pavlov, V., Reitsma, A., Saveliev, Y., Vieux G. and Wiggins, S. M. 2006 Phil. Trans. R. Soc. A 364 689.CrossRefGoogle Scholar
[17]Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W. and Perry, M. D. 1996 Phys. Rev. B 53 1749.CrossRefGoogle Scholar
[18]Kaganovich, D., Sasorov, P., Cohen, C. and Zigler, A. 1999 Appl. Phys. Lett. 75, 772.CrossRefGoogle Scholar
[19]Katsouleas, T. 1986 Phys. Rev. A 33 2056.CrossRefGoogle Scholar
[20]Sprangle, P., Penano, J. R., Hafizi, B., Hubbard, R. F., Ting, A., Gordon, D. F., Zigler, A. and Antonsen, T. M. Jr., 2002 Phys. Plasmas 9, 2364.CrossRefGoogle Scholar
[21]Rittershofer, W., Schroeder, C. B., Esarey, E., Grüner, F. J. and Leemans, W. P. 2010 Phys. Plasmas 17, 063104.CrossRefGoogle Scholar
[22]Abuazoum, S., Wiggins, S. M., Issac, R. C., Welsh, G. H., Vieux, G., Ganciu, M. and Jaroszynski, D. A. 2011 Rev. Sci. Instrum. 82, 063505.CrossRefGoogle Scholar
[23]Jaroszynski, D. A., Ersfeld, B., Giraud, G., Jamison, S., Jones, D. R., Issac, R. C., McNeil, B. W. J., Phelps, A. D. R., Robb, G. R. M., Sandison, H., Vieux, G., Wiggins, S. M. and Wynne, K. 2000 Nucl. Instrum. Methods Phys. Res., Sec. A 445 317.CrossRefGoogle Scholar
[24]Travis, J and Kring, J. 2006 Labview for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall; National Instruments. http://www.ni.com/labview/.Google Scholar
[25]Ashkenazy, J., Kipper, R. and Caner, M. 1991 Phys. Rev. A 43 5568.CrossRefGoogle Scholar
[26]Brobova, N. A., Esaulov, A. A., Sakai, J.-I., Sasorov, P. V., Spence, D. J., Butler, A., Hooker, S. M. and Bulanov, S. V. 2001 Phys. Rev. E 65 016407.CrossRefGoogle Scholar
[27]Gonsalves, A. J., Rowlands-Rees, T. P., Broks, B. H. P., van der Mullen, J. J. A. M. and Hooker, S. M. 2007 Phys. Rev. Lett. 98, 025002.CrossRefGoogle Scholar
[28]Jang, D. G., Kim, M. S., Nam, I. H., Uhm, H. S. and Suk, H. 2011 Appl. Phys. Lett. 99, 141502.CrossRefGoogle Scholar
[29]Broks, B. H. P., Garloff, K. and van der Mullen, J. J. A. M. 2005 Phys. Rev. E 71 016401.CrossRefGoogle Scholar
[30]Torres, J., Palomares, J. M., Sola, A., van der Mullen, J. J. M. and Gamero, A. 2007 J. Phys. D.: Appl. Phys. 40, 5929.CrossRefGoogle Scholar
[31]Abuazoum, S., Wiggins, S. M., Ersfeld, B., Hart, K., Vieux, G., Yang, X., Welsh, G. H., Issac, R. C., Reijnders, M. P., Jones, D. R. and Jaroszynski, D. A. 2012 Appl. Phys. Lett. 100, 014106.CrossRefGoogle Scholar
[32]Hughes, T. P. 1975 Plasmas and Laser Light. Adam Hilger.Google Scholar
[33]Hora, H. and Wilhelm, H. 1970 Nucl. Fusion 10, 111.CrossRefGoogle Scholar
[34]Borowiec, A., Mackenzie, M., Weatherly, G. C. and Haugen, H. K. 2003 Appl. Phys. A 76 201.CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Straight and linearly tapered capillaries produced by femtosecond laser micromachining
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Straight and linearly tapered capillaries produced by femtosecond laser micromachining
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Straight and linearly tapered capillaries produced by femtosecond laser micromachining
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *