Skip to main content
×
×
Home

Energetic particles in magnetotail reconnection

  • Ivy Bo Peng (a1), Juris Vencels (a1), Giovanni Lapenta (a2), Andrey Divin (a3), Andris Vaivads (a3), Erwin Laure (a1) and Stefano Markidis (a1)...
Abstract

We carried out a 3D fully kinetic simulation of Earth's magnetotail magnetic reconnection to study the dynamics of energetic particles. We developed and implemented a new relativistic particle mover in iPIC3D, an implicit Particle-in-Cell code, to correctly model the dynamics of energetic particles. Before the onset of magnetic reconnection, energetic electrons are found localized close to current sheet and accelerated by lower hybrid drift instability. During magnetic reconnection, energetic particles are found in the reconnection region along the x-line and in the separatrices region. The energetic electrons are first present in localized stripes of the separatrices and finally cover all the separatrix surfaces. Along the separatrices, regions with strong electron deceleration are found. In the reconnection region, two categories of electron trajectory are identified. First, part of the electrons are trapped in the reconnection region, bouncing a few times between the outflow jets. Second, part of the electrons pass the reconnection region without being trapped. Different from electrons, energetic ions are localized on the reconnection fronts of the outflow jets.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energetic particles in magnetotail reconnection
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energetic particles in magnetotail reconnection
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energetic particles in magnetotail reconnection
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: bopeng@kth.se
References
Hide All
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G. and Hwang, K.-J. 2011 Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Phys. 7 (4), 360365.
Birdsall, C. K. and Langdon, A. B. 2004 Plasma Physics Via Computer Simulation. New York: CRC Press.
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M. and Zelenyi, L. M. 2012 Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173 (1–4), 49102.
Birn, J.et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. (Space Phys.) 106, 37153720.
Birn, J. and Priest, E. R. 2007 Reconnection of Magnetic Fields. Cambridge: Cambridge University Press.
Daughton, W. 2003 Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10, 3103.
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. and Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys. 7, 539542.
Divin, A., Lapenta, G., Markidis, S., Newman, D. L. and Goldman, M. V. 2012 Numerical simulations of separatrix instabilities in collisionless magnetic reconnection. Phys. Plasmas (1994-present) 19 (4), 042 110.
Divin, A., Markidis, S., Lapenta, G., Semenov, V. S., Erkaev, N. V. and Biernat, H. K. 2010 Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas (1994–present) 17 (12), 122 102.
Egedal, J., Fox, W., Katz, N., Porkolab, M., Øieroset, M., Lin, R. P., Daughton, W. and Drake, J. F. 2008 Evidence and theory for trapped electrons in guide field magnetotail reconnection. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2008JA013520.
Egedal, J., Øieroset, M., Fox, W. and Lin, R. P. 2005 In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the earth's magnetotail. Phys. Rev. Lett. 94 (2), 025 006.
Finn, J. M. 2006 Magnetic reconnection: null point. Nature Phys. 2 (7), 445446.
Fu, X. R., Lu, Q. M. and Wang, S. 2006 The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas (1994–present) 13 (1), 012 309.
Hockney, R. W. and Eastwood, J. W. 1988 Computer Simulation using Particles. New York: CRC Press.
Hoshino, M. 2005 Electron surfing acceleration in magnetic reconnection. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2005JA011229.
Hoshino, M., Mukai, T., Terasawa, T. and Shinohara, I. 2001 Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res.: Space Phys. (1978–2012) 106 (A11), 25 97925 997.
Kivelson, M. G. and Russell, C. T. 1995 Introduction to Space Physics. Cambridge: Cambridge University Press.
Lapenta, G., Brackbill, J. U. and Daughton, W. S. 2003 The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions. Phys. Plasmas 10 (5), 15771587.
Lapenta, G., Brackbill, J. U. and Ricci, P. 2006 Kinetic approach to microscopic macroscopic coupling in space and laboratory plasmas. Phys. Plasmas 13 (5), 055 904.
Lapenta, G., Goldman, M., Newman, D., Markidis, S. and Divin, A. 2014 Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection. Phys. Plasmas (1994–present) 21 (5), 055 702.
Lapenta, G., Markidis, S., Divin, A., Goldman, M. and Newman, D. 2010 Scales of guide field reconnection at the hydrogen mass ratio. Phys. Plasmas (1994–present) 17 (8), 082 106.
Lapenta, G., Markidis, S., Divin, A., Goldman, M. V. and Newman, D. L. 2011 Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields. Geophys. Res. Lett. 38 L17 104.
Loureiro, N. F., Schekochihin, A. A. and Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111 (2), 025 002.
Markidis, S., Henri, P., Lapenta, G., Divin, A., Goldman, M. V., Newman, D. and Eriksson, S. 2012 Collisionless magnetic reconnection in a plasmoid chain. Nonlinear Process. Geophys. 19 (1), 145153.
Markidis, S., Lapenta, G. and , Rizwan-uddin 2010 Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80 (7), 15091519.
Nagai, T., Shinohara, I., Fujimoto, M., Hoshino, M., Saito, Y., Machida, S. and Mukai, T. 2001 Geotail observations of the hall current system: evidence of magnetic reconnection in the magnetotail. J. Geophys. Res.: Space Phys. 106 (A11), 25 92925 949.
Nagai, T., Shinohara, I., Zenitani, S., Nakamura, R., Nakamura, T. K. M., Fujimoto, M., Saito, Y., and Mukai, T.. “Three-dimensional structure of magnetic reconnection in the magnetotail from Geotail observations.” Journal of Geophysical Research: Space Physics 118, no. 4 (2013): 1667–1678.
Noguchi, K., Tronci, C., Zuccaro, G. and Lapenta, G. 2007 Formulation of the relativistic moment implicit particle-in-cell method. Phys. Plasmas (1994–present) 14 (4), 042 308.
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. 2002a Evidence for electron acceleration up to 300 keV in the magnetic reconnection diffusion region of earth's magnetotail. Phys. Rev. Lett. 89, 195 001.
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. 2002b Evidence for electron acceleration up to 300 kev in the magnetic reconnection diffusion region of Earth's magnetotail. Phys. Rev. Lett. 89 (19), 195 001.
Ottaviani, M. and Porcelli, F. 1993 Nonlinear collisionless magnetic reconnection. Phys. Rev. Lett. 71 (23), 3802.
Pegoraro, F., Borgogno, D., Califano, F., Sarto, D. D., Echkina, E., Grasso, D., Liseikina, T. and Porcelli, F. 2004 Developments in the theory of collisionless reconnection in magnetic configurations with a strong guide field. Nonlinear Process. Geophys. 11 (5/6), 567577.
Press, W. H. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn.Cambridge: Cambridge University Press.
Priest, E. and Forbes, T. 2007 Magnetic reconnection: MHD theory and applications. Cambridge: Cambridge University Press.
Retinò, A.et al. 2008 Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the earth's magnetotail. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2008JA013511.
Ricci, P., Brackbill, J. U., Daughton, W. and Lapenta, G. 2005 New role of the lower-hybrid drift instability in the magnetic reconnection. Phys. Plasmas 12 (5), 055 901.
Ricci, P., Lapenta, G. and Brackbill, J. U. 2003 Electron acceleration and heating in collisionless magnetic reconnection. Phys. Plasmas (1994-present) 10 (9), 35543560.
Russell, C. T. 1971 Geophysical coordinate transformations. Cosm. Electrodyn. 2 (2), 184196.
Sharma, A. S.et al. 2008 Transient and localized processes in the magnetotail: a review. In Ann. Geophys. 26, 9551006. Göttingen.
Sonnerup, B. U. 1974 Magnetopause reconnection rate. J. Geophys. Res. 79 (10), 15461549.
Speiser, T. W. 1965 Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70 (17), 42194226.
van der Plas, E. V. and de Blank, H. J. 2007 Temperature gradients in fast collisionless magnetic reconnection. Phys. Rev. Lett. 98 (26), 265 002.
Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M. and Newman, D. 2013 Formation of a transient front structure near reconnection point in 3-D pic simulations. J. Geophys. Res.: Space Phy. 118 (4), 14351449.
Vay, J.-L. 2008 Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas (1994-present) 15 (5), 056 701.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed