Skip to main content Accessibility help
×
Home

Guiding-centre transformation of the radiation–reaction force in a non-uniform magnetic field

  • E. Hirvijoki (a1), J. Decker (a2), A. J. Brizard (a3) and O. Embréus (a1)

Abstract

In this paper, we present the guiding-centre transformation of the radiation–reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation–reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429–4438), where it was used to eliminate the fast gyromotion from the Fokker–Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation–reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.

Copyright

Corresponding author

Email address for correspondence: eero.hirvijoki@chalmers.se

References

Hide All
Abraham, M. 1905 Theorie der Elektrizität, Vol II: Elektromagnetische Theorie der Strahlung. Teubner.
Andersson, F., Helander, P. & Eriksson, L.-G. 2001 Damping of relativistic electron beams by synchrotron radiation. Phys. Plasmas 8 (12), 52215229.
Bakhtiari, M., Kramer, G. J., Takechi, M., Tamai, H., Miura, Y., Kusama, Y. & Kamada, Y. 2005 Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks. Phys. Rev. Lett. 94, 215003.
Brizard, A. J. 2004 A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 44294438.
Brizard, A. J., Decker, J., Peysson, Y. & Duthoit, F.-X. 2009 Orbit-averaged guiding-center Fokker–Planck operator. Phys. Plasmas 16 (10), 102304.
Cary, J. R. & Brizard, A. J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.
Decker, J., Peysson, Y., Brizard, A. J. & Duthoit, F.-X. 2010 Orbit-averaged guiding-center Fokker–Planck operator for numerical applications. Phys. Plasmas 17 (11), 112513.
Dirac, P. A. M. 1938 Classical theory of radiating electrons. Proc. R. Soc. Lond. A 167 (929), 148169.
Ford, G. W. & O’Connell, R. F. 1993 Relativistic form of radiation reaction. Phys. Lett. A 174 (3), 182184.
Griffiths, D. J., Proctor, T. C. & Schroeter, D. F. 2010 Abraham–Lorentz versus Landau–Lifshitz. Am. J. Phys. 78 (4), 391402.
Guan, X., Qin, H. & Fisch, N. J. 2010 Phase-space dynamics of runaway electrons in tokamaks. Phys. Plasmas 17 (9), 092502.
Landau, L. D. & Lifshitz, E. M. 1975 The Classical Theory of Fields, 4th edn., Course of Theoretical Physics, vol. 2. Pergamon.
Littlejohn, R. G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29, 111125.
Liu, J., Qin, H., Fisch, N. J., Teng, Q. & Wang, X. 2014 What is the fate of runaway positrons in tokamaks? Phys. Plasmas 21 (6), 064503.
Lorentz, H. A. 1936 La théorie électromagnétique de Maxwell et son application aux corps mouvants. In Collected Papers, pp. 164343. Springer.
Pauli, W. 1958 Theory of Relativity. Pergamon.
Rohrlich, F. 2007 Classical Charged Particles. World Scientific.
Spohn, H. 2000 The critical manifold of the Lorentz-Dirac equation. Europhys. Lett. 50 (3), 287292.
Stahl, A., Hirvijoki, E., Decker, J., Embréus, O. & Fülöp, T. 2015 Effective critical electric field for runaway-electron generation. Phys. Rev. Lett. 114, 115002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed