Skip to main content Accessibility help
×
Home

Macroscopic electromagnetic stress tensor for ionized media

  • ROBERT W. JOHNSON (a1)

Abstract

Following the arguments presented by Mansuripur [Opt. Express, vol. 16, 2008, pp. 14821–14835], we suggest a form for the macroscopic electromagnetic stress tensor appropriate for ionized media. The generalized Lorentz force includes the effects of polarization forces as well as those on the free charge and current densities. The resulting tensor is written in terms of the fields D, B, E, and H. Its expression for a fully ionized medium subject to an external electromagnetic field is discussed, as are the plasma conservation equations. An apparatus is suggested for its experimental discrimination.

Copyright

References

Hide All
[1]Jackson, J. D. 1998 Classical Electrodynamics. John Wiley & Sons, New York, NY, USA, 3rd edition.
[2]Loudon, R., Barnett, S. M. and Baxter, C. 2005 Radiation pressure and momentum transfer in dielectrics: the photon drag effect. Phys. Rev. A 71 (6), 063802.
[3]Liu, M. and Stierstadt, K. 2000 Electromagnetic force and the Maxwell stress tensor in condensed systems. ArXiv Condensed Matter e-prints, (cond-mat/0010261).
[4]Engel, A. and Friedrichs, R. 2002 On the electromagnetic force on a polarizable body. Am. J. Phys. 70, 428432.
[5]Melcher, J. R. 1981 Continuum Electromechanics. Cambridge, MA: MIT Press.
[6]Rosensweig, R. E. 1982 Magnetic fluids. Sci. Am. 247 (4), 136145.
[7]Mansuripur, M. 2008 Electromagnetic stress tensor in ponderable media. Opt. Express 16 (8), 51935198.
[8]Mansuripur, M. 2008 Electromagnetic force and torque in ponderable media. Opt. Express 16 (19), 1482114835.
[9]Ryder, L. H. 1985 Quantum Field Theory. Cambridge University Press, Cambridge, UK.
[10]Davis, W. R. 1970 Classical Fields, Particles, and the Theory of Relativity. Gordon and Breach Science Publishers, New York, NY, USA.
[11]Nakahara, M. 1990 Geometry, Topology and Physics. IOP Publishing Ltd., Bristol, UK.
[12]Ward, R. S. Jr., and Wells, R. O. 1991 Twistor Geometry and Field Theory. Cambridge University Press, Cambridge, UK.
[13]Rousseaux, G., Kofman, R. and Minazzoli, O. 2008 The Maxwell–Lodge effect: significance of electromagnetic potentials in the classical theory. Eur. Phys. J. D 49, 249256.
[14]Griffiths, D. 1989 Introduction to Electrodynamics, 2nd edn.Englewood Cliffs, NJ: Prentice-Hall, USA.
[15]Mattuck, R. D. 1976 A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn.McGraw-Hill, New York, NY, USA.
[16]Cohen, E. R., Lide, D. R. and Trigg, G. L. (Eds) 2003 AIP Physics Desk Reference. Springer-Verlag New York, Inc., New York, NY, USA, 3rd edition.
[17]Abraham, M. 1909 Rend. Circ. Mat. Palermo 30, 33.
[18]Minkowski, H. 1910 Math. Ann. 68, 472.
[19]Loudon, R. and Barnett, S. M. 2006 Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Optics Express 14, 1185511869.
[20]Hazeltine, R. D. and Waelbroeck, F. L. 2004 The Framework of Plasma Physics. Westview Press, Boulder, CO, USA.
[21]Marshall, T. C. and Goldstein, L. 1961 Experimental study of the diamagnetism of gaseous plasmas with electron and nuclear spin resonance techniques. Phys. Rev. 122, 367376.
[22]Halzen, F. and Martin, A. D. 1985 Quarks and Leptons. John Wiley & Sons, New York, NY, USA.
[23]Dendy, R. 1993 Plasma Physics: An Introductory Course. Cambridge University Press, Cambridge, UK.
[24]Stacey, W. M. 2005 Fusion Plasma Physics. Wiley-VCH, New York, NY, USA.
[25]Fitzpatrick, R. 2008 The Physics of Plasmas. Lulu, Inc., Raleigh, NC, USA.
[26]Noether, E. 1918 Invariante variationsprobleme. Nachr. D. Knig. Gesellsch. D. Wiss. Zu Gttingen, Math-phys. Klasse, 235–257.
[27]Guyon, É., Hulin, J.-P. and Petit, L. 2001 Physical Hydrodynamics. Oxford University Press, Oxford, UK.
[28]Woods, L. C. 2004 Physics of Plasmas. Wiley-VCH, Welnhelm, Germany.
[29]Braginskii, S. I. 1965 Transport processes in plasma. In: Reviews of Plasma Physics, Vol. 1 (ed. Leontovich, M. A.). New York: Consultants Bureau, NY, USA, pp. 205311.
[30]Johnson, R. W. 2009 Comment on ‘Plasma ionization by annularly bounded helicon waves’. Phys. Plasmas 16 (5), 054701 [Phys. Plasmas 13, 063501 (2006)].
[31]Johnson, R. W. 2009 Stationary axial equilibrium in light of the magnetic polarization force. ArXiv Plasma Physics e-prints, (0806.4698v3).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed