[1]Berarducci, A., O-minimal spectra, infinitesimal subgroups and cohomology, this Journal, vol. 72, (2007), no. 4, pp. 1177–1193.
[2]Berarducci, A. and Fornasiero, A., O-mininal cohomology: finiteness and invariance results, eprint arXiv:math. LO/0705.3425, 26 May 2007, 28 pp.
[3]Berarducci, A. and Otero, M., An additive measure in o-minimal expansions of fields, Quarterly Journal of Mathematics, vol. 55 (2004), pp. 411–419.
[4]Berarducci, A., Otero, M., Peterzil, Y., and Pillay, A., A descending chain condition for groups definable in o-minimal structures, Annals of Pure and Applied Logic, vol. 134 (2005), pp. 303–313.
[5]Bredon, G. E., Sheaf theory, second ed., Graduate Texts in Mathematics, no. 170, Springer-Verlag, New York, 1997.
[6]Carral, M. and Coste, M., Normal spectral spaces and their dimension, Journal of Pure and Applied Algebra, vol. 30 (1983), pp. 227–235.
[7]Delfs, H., The homotopy axiom in semialgebraic cohomology, Journal für die reine und angewandte Mathematik, vol. 355 (1985), pp. 108–128.
[8]Dolich, A., Forking and independence in o-minimal theories, this Journal, vol. 69 (2004), no. 1, pp. 215–240.
[9]Edmundo, M., Jones, G. O., and Peatfield, N. J., Sheaf cohomology in o-minimal structures, Journal of Mathematical Logic, vol. 6 (2006), no. 2, pp. 163–179.
[10]Edmundo, M., Hurewicz theorems for definable groups, Lie groups and their cohomologies, preprint, 10 13 2007, (http://www.ciul.ul.pt/~edmundo/), 22 pp. [11]Edmundo, M. and Otero, M., Definably compact abelian groups, Journal of Mathematical Logic, vol. 4 (2004), no. 2, pp. 163–180.
[12]Hrushovski, E., Peterzil, Y., and Pillay, A., Groups, measures and the NIP, Journal of the American Mathematical Society, vol. 21 (2008), no. 2, pp. 563–596.
[13]Hrushovski, E. and Pillay, A., On NIP and invariant measures, eprint arXiv:math.LO/0710.2330, 11 10 2007, 61 pp.
[14]Jones, G. O., Local to global methods in o-minimal expansions of fields, Ph.D. thesis, Oxford, 2006.
[15]Otero, M. and Peterzil, Y., G-linear sets and torsion points in definably compact groups, eprint arXiv:math.L0/0708.0532vl, 3 08 2007, 17 pp.
[16]Peterzil, Y. and Pillay, A., Generic sets in definably compact groups, Fundamenta Mathematicae, vol. 193 (2007), pp. 153–170.
[17]Peterzil, Y., Pillay, A., and Starchenko, S., Definably simple groups in o-minimal structures, Transactions of the American Mathematical Society, vol. 352 (2000), pp. 4397–4419.
[18]Pillay, A., On groups and rings definable in o-minimal structures, Journal of Pure and Applied Algebra, vol. 53 (1988), pp. 239–255.
[19]Pillay, A., Sheaves of continuous definable functions, this Journal, vol. 53 (1988), no. 4, pp. 1165–1169.
[20]Pillay, A., Type-definability, compact Lie groups and o-minimality, Journal of Mathematical Logic, vol. 4 (2004), pp. 147–162.
[21]Shelah, S., Minimal bounded index subgroup for dependent theories, Proceedings of the American Mathematical Society, vol. 136 (2008), pp. 1087–1091.