[1]Aitchison, I. R., Lumsden, E. and Rubinstein, J. H., ‘Cusp structure of alternating links’, Invent. Math. 109 (1992), 473–494.

[2]Aitchison, I. R. and Rubinstein, J. H., ‘Geodesic surfaces in knot complements’, preprint, University of Melbourne, 1990.

[3]Aitchison, I. R. and Rubinstein, J. H., ‘An introduction to polyhedral metrics of non-positive curvature on 3-manifolds’, in: Geometry of Low-Dimensional Manifolds: 2 (eds. Donaldson, S. K. and Thomas, C. B.), London Math. Soc. Lecture Notes 151 (Cambridge University Press, Cambridge, 1990) pp. 127–161.

[4]Aitchison, I. R. and Rubinstein, J. H., ‘Canonical surgery on alternating link diagrams’, in: Knots 90 (ed. Kawauchi, A.) (de Gruyter, Berlin, 1992) pp. 543–558.

[5]Aitchison, I. R. and Rubinstein, J. H., ‘Combinatorial cubings, cusps and the dodecahedral knots’, in: Topology 90 (eds. Apanasov, , Neumann, , Reid, and Siebenmann, ) (de Gruyter, Berlin, 1992) pp. 17–26.

[6]Culler, M. and Shalen, P., ‘Varieties of group representations and splittings of 3-manifolds’, Ann. of Math. 117 (1983), 109–146.

[7]Epstein, D., ‘Periodic flows on three-manifolds’, Ann. of Math. 95 (1972), 66–82.

[8]Freedman, M., Hass, J. and Scott, P., ‘Least area incompressible surfaces in 3-manifolds’, Invent. Math. 71 (1983), 609–642.

[9]Gabai, D., ‘Homotopy hyperbolic 3-manifolds are virtually hyperbolic’, preprint, 1992.

[10]Gordon, C. and Luecke, J., ‘Knots are determined by their complements’, J. Amer. Math. Soc. 2 (1989), 371–415.

[11]Gromov, M., ‘Hyperbolic groups’, in: Essays in Group Theory (ed. Gersten, S.), MSRI publications 8 (Springer, Berlin, 1987) pp. 75–264.

[12]Haken, W., ‘Theorie der Normal Flächen’, Acta Math. 105 (1961), 245–375.

[13]Haken, W., ‘Über das Homöomorphieproblem der 3-Mannigfaltigkeiten I’, Math. Z. 80 (1962), 89–120.

[14]Haken, W., ‘Some results on surfaces in 3-manifolds’, in: Studies in Modern Topology (Math. Assoc. Amer., Washington D.C., 1968) pp. 34–98.

[15]Hass, J. and Scott, P., ‘Homotopy equivalence and homeomorphism of 3-manifolds’, Topology 31 (1992), 493–517.

[16]Hatcher, A., ‘On the boundary curves of incompressible surfaces’, Pacific J. Math. 99 (1982), 373–377.

[17]Hemion, G., ‘On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds’, Acta Math. 142 (1979), 123–155.

[18]Hempel, J., 3-Manifolds, Annals of Math. Studies 86 (Princeton University Press, Princeton, 1976).

[19]Hempel, J., ‘Homology of coverings’, Pacific J. Math. 112 (1984), 83–113.

[20]Hempel, J., ‘Residual finiteness for 3-manifolds’, in: Combinatorial group theory and topology, volume 111 of *Annals of Math. Studies* (Princeton University Press, Princeton, 1987) pp. 379–396.

[21]Jaco, W., Lectures on three-manifold topology, Conf. Board of Math. Sci. 43 (American Math. Society, Providence, 1980).

[22]Jaco, W. and Rubinstein, J. H., ‘PL minimal surfaces in 3-manifolds’, J. Differential Geom. 27 (1988), 493–524.

[23]Jaco, W. and Shalen, P., Seifert Fibered Spaces in 3-Manifolds, Mem. Amer. Math. Soc. 220 (1980).

[24]Johannson, K., Homotopy Equivalences of 3-manifolds with Boundary, Lecture Notes in Mathematics 761 (Springer-Verlag, Berlin, 1979).

[25]Kneser, H., ‘Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten’, Jahresber. Deutsch Math.-Verein 38 (1929), 248–260.

[26]Lickorish, W. B. R., ‘A representation of orientable combinatorial 3-manifolds’, Ann. of Math. 76 (1962), 531–540.

[27]Long, D., ‘Immersions and embeddings of totally geodesic surfaces’, Bull. London Math. Soc. 19 (1987), 481–484.

[28]Markov, A. A., ‘Unsolvability of the problem of homeomorphy’, in: Proceedings of the International Congress of Mathematicians 1958 (ed. Todd, J. A.) (Cambridge University Press, Cambridge, 1960) pp. 300–306.

[29]Millson, J., ‘On the first Betti number of a constant negatively curved manifold’, Ann. of Math. 104 (1976), 235–247.

[30]Milnor, J., ‘A unique factorisation theorem for 3-manifolds’, Amer. J. Math. 84 (1962), 1–7.

[31]Moise, E., ‘Affine structures in 3-manifolds V. the triangulation theorem and hauptvermutung’, Ann. of Math. 56 (1952), 96–114.

[32]Mostow, G., ‘Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms’, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.

[33]Orlik, P., Seifert Manifolds, Lecture Notes in Mathematics 291 (Springer-Verlag, Berlin, 1972).

[34]Papakyriakopoulos, C., ‘On Dehn's Lemma and the asphericity of knots’, Ann. of Math. 66 (1957), 1–26.

[35]Papakyriakopoulos, C., ‘On solid tori’, Proc. London Math. Soc. 7 (1957), 281–299.

[36]Rubinstein, J. H. and Swarup, G. A., ‘On Scott's core theorem’, Bull. London Math. Soc. 22 (1990), 495–498.

[37]Schubert, H., ‘Bestimmung der Primfaktorzerlegung von Verkettungen’, Math. Zeit. 76 (1961), 116–148.

[38]Scott, P., ‘Compact submanifolds of 3-manifolds’, J. London Math. Soc. (2) 7 (1973), 246–250.

[39]Scott, P., ‘The geometries of 3-manifolds’, Bull. London Math. Soc. 15 (1983), 401–487.

[40]Seifert, H., ‘Topologie dreidimensionalen gefaserter Räume’, Acta Math. 60 (1933), 147–238.

[41]Skinner, A., The word problem in the fundamental groups of a class of three dimensional manifolds (Ph.D. Thesis, University of Melbourne, 1991).

[42]Stallings, J., ‘On the loop theorem’, Ann. of Math. 72 (1960), 12–19.

[43]Stallings, J., ‘On fibering certain 3-manifolds’, in: Topology of 3-Manifolds (ed. Fort, M.) (Prentice-Hall, 1962) pp. 95–100.

[44]Swarup, G. A., ‘On a theorem of Johannson’, J. London Math. Soc. 18 (1978), 560–562.

[45]Thurston, W., The geometry and topology of 3-manifolds (Lecture notes, Princeton University, 1978).

[46]Thurston, W., ‘Three dimensional manifolds, Kleinian groups and hyperbolic geometry’, Bull. Amer. Math. Soc. 6 (1982), 357–381.

[47]Thurston, W., ‘Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds’, Ann. of Math. 124 (1986), 203–246.

[48]Waldhausen, F., ‘On irreducible 3-manifolds which are sufficiently large’, Ann. of Math. 87 (1968), 56–88.

[49]Waldhausen, F., ‘The word problem in fundamental groups of sufficiently large 3-manifolds’, Ann. of Math. 88 (1968), 272–280.

[50]Waldhausen, F., ‘On the determination of some bounded 3-manifolds by their fundamental groups alone’, in: Proc. of Inter. Sym. on Topology (Yugoslavia, Beograd, 1969) pp. 331–332.

[51]Wu, Y-Q., ‘Incompressibility of surfaces in surgered 3-manifolds’, Topology 31 (1992), 271–279.