[1]
Albrecht, A., Howlett, P. and Pearce, C., ‘The fundamental equations for inversion of operator pencils on Banach space’, J. Math. Anal. Appl.
413 (2014), 411–421.

[2]
Albrecht, A. R., Howlett, P. G. and Pearce, C. E. M., ‘Necessary and sufficient conditions for the inversion of linearly-perturbed bounded linear operators on Banach space using Laurent series’, J. Math. Anal. Appl.
383(1) (2011), 95–110.

[3]
Avrachenkov, K. E., Filar, J. A. and Howlett, P. G., Analytic Perturbation Theory and its Applications, Other Titles in Applied Mathematics, 135 (SIAM, Philadelphia, PA, 2013).

[4]
Avrachenkov, K. E., Haviv, M. and Howlett, P. G., ‘Inversion of analytic matrix functions that are singular at the origin’, SIAM J. Matrix Anal. Appl.
22(4) (2001), 1175–1189.

[5]
Avrachenkov, K. E. and Lasserre, J.-B., ‘The fundamental matrix of singularly perturbed Markov chains’, Adv. Appl. Probab.
31(3) (1999), 679–697.

[6]
Dunford, N. and Schwartz, J., Linear Operators, Part I: General Theory, Wiley Classics (John Wiley, New York, 1988).

[7]
Franchi, M. and Paruolo, P., ‘Inverting a matrix function around a singularity via local rank factorization’, SIAM J. Matrix Anal. Appl.
37(2) (2016), 774–797.

[8]
Gohberg, I., Goldberg, S. and Kaashoek, M. A., Classes of Linear Operators, Vol. 1, Operator Theory: Advances and Applications, 49 (Birkhauser, Basel, 1990).

[9]
Howlett, P. G., ‘Input retrieval in finite dimensional linear systems’, ANZIAM J. (formerly *J. Aust. Math. Soc. Ser.* B)
23 (1982), 357–382.

[10]
Howlett, P., Albrecht, A. and Pearce, C., ‘Laurent series for inversion of linearly perturbed bounded linear operators on Banach space’, J. Math. Anal. Appl.
366(1) (2010), 112–123.

[11]
Howlett, P., Avrachenkov, K., Pearce, C. and Ejov, V., ‘Inversion of analytically perturbed linear operators that are singular at the origin’, J. Math. Anal. Appl.
353(1) (2009), 68–84.

[12]
Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (Springer, Berlin, 1995).

[13]
Langenhop, C. E., ‘The Laurent expansion for a nearly singular matrix’, Linear Algebra Appl.
4 (1971), 329–340.

[14]
Langenhop, C. E., ‘On the invertibility of a nearly singular matrix’, Linear Algebra Appl.
7 (1973), 361–365.

[15]
Luenberger, D. G., Optimization by Vector Space Methods (Wiley, New York, 1969).

[16]
Sain, M. K. and Massey, J. L., ‘Invertibility of linear time invariant dynamical systems’, IEEE Trans. Automat. Control
AC‐14 (1969), 141–149.

[17]
Schweitzer, P. and Stewart, G. W., ‘The Laurent expansion of pencils that are singular at the origin’, Linear Algebra Appl.
183 (1993), 237–254.

[18]
Stummel, F., ‘Diskrete Konvergenz linearer Operatoren. I’, Math. Ann.
190 (1970), 45–92.

[19]
Van Dooren, P., ‘The computation of Kronecker’s canonical form of a singular pencil’, Linear Algebra Appl.
27 (1979), 103–140.

[20]
Wilkening, J., ‘An algorithm for computing Jordan chains and inverting analytic matrix functions’, Linear Algebra Appl.
427(1) (2007), 6–25.

[21]
Yosida, K., Functional Analysis, 5th edn, Classics in Mathematics (Springer, Berlin–Heidelberg–New York, 1978).