Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T19:26:45.503Z Has data issue: false hasContentIssue false

On certain methods of solving a class of integral equations of Fredholm type

Published online by Cambridge University Press:  09 April 2009

H. M. Srivastava
Affiliation:
Department of Mathematics and StatisticsUniversity of VictoriaVictoria, British Columbia V8W 3P4, Canada
R. K. Raina
Affiliation:
Department of Mathematics College of Technology and Agricultural Engineering (Rajasthan Agricultural University) Udaipur-313001, Rajasthan, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The authors begin by presenting a brief survey of the various useful methods of solving certain integral equations of Fredholm type. In particular, they apply the reduction techniques with a view to inverting a class of generalized hypergeometric integral transforms. This is observed to lead to an interesting generalization of the work of E. R. Love [9]. The Mellin transform technique for solving a general Fredholm type integral equation with the familiar H-function in the kernel is also considered.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Buschman, R. G., ‘An inversion integral’, Proc. Amer. Math. Soc. 13 (1962), 675677.Google Scholar
[2]Erdélyi, A., ‘An integral equation involving Legendre functions’, J. Soc. Indust. Appl. Math. 12 (1964), 1530.CrossRefGoogle Scholar
[3]Fox, C., ‘The G and H functions as symmetrical Fourier kernels’, Trans. Amer. Math. Soc. 98 (1961), 395429.Google Scholar
[4]Gupta, K. C. and Jain, U. C., ‘The H-function. II’, Proc. Nat. Acad. Sci. India Sect. A 36 (1966), 594609.Google Scholar
[5]Gupta, K. C. and Mittal, P. K., ‘The H-function transform’, J. Austral. Math. Soc. 11 (1970), 142148.CrossRefGoogle Scholar
[6]Higgins, T. P., ‘A hypergeometric function transform’, J. Soc. Industr. Appl. Math. 12 (1964), 601612.CrossRefGoogle Scholar
[7]Lighthill, M. J., Introduction to Fourier analysis and generalised functions (Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, London, and New York, 1958).CrossRefGoogle Scholar
[8]Love, E. R., ‘Some integral equations involving hypergeometric functions’, Proc. Edinburgh Math. Soc. (2) 15 (1967), 169198.CrossRefGoogle Scholar
[9]Love, E. R., ‘A hypergeometric integral equation’, in Fractional calculus and its applications, edited by Ross, B., pp. 272288 (Springer-Verlag, New York, 1975).CrossRefGoogle Scholar
[10]Love, E. R., Prabhakar, T. R., and Kashyap, N. K., ‘A confluent hypergeometric integral equation’, Glasgow Math. J. 23 (1982), 3140.CrossRefGoogle Scholar
[11]Prabhakar, T. R., ‘A class of integral equations with Gauss functions in the kernels’, Math. Nachr. 52 (1972), 7183.Google Scholar
[12]Prabhakar, T. R. and Kashyap, N. K., ‘A new class of hypergeometric integral equations’, Indian J. Pure Appl. Math. 11 (1980), 9297.Google Scholar
[13]Raina, R. K., ‘On the Weyl fractional differentiation’, Pure Appl. Math. Sci. 10 (1979), 3741.Google Scholar
[14]Srivastava, H. M., ‘Some remarks on a generalization of the Stieltijes transform’, Publ. Math. Debrecen 23 (1976), 119122.Google Scholar
[15]Srivastava, H. M. and Buschman, R. G., Convolution integral equations with speacial function kernels (Halsted Press, John Wiley and Sons, New York, 1977).Google Scholar
[16]Srivastava, H. M., Gupta, K. C., and Goyal, S. P., The H-functions of one and two variables with applications (South Asian Publishers, New Delhi, 1982).Google Scholar
[17]Titchmarsh, E. C., Introduction to the theory of Fourier integrals (Second Edition, Oxford University Press, London, Clarendon Press, Oxford, 1948).Google Scholar
[18]Widder, D. V., The Laplace transform (Princeton University Press, Princeton, New Jersey, 1946).Google Scholar