Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-bmzkg Total loading time: 0.332 Render date: 2022-07-01T16:13:04.197Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

On the existence of sequences of co-prime pairs of integers

Published online by Cambridge University Press:  09 April 2009

David L. Dowe
Affiliation:
Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We say that a positive integer d has property (A) if for all positive integers m there is an integer x, depending on m, such that, setting n = m + d, x lies between m and n and x is co-prime to mn. We show that infinitely many even d and infinitely many odd d have property (A) and that infinitely many even d do not have property (A). We conjecture and provide supporting evidence that all odd d have property (A).

Following A. R. Woods [3] we then describe conditions (Au) (for each u) asserting, for a given d, the existence of a chain of at most u + 2 integers, each co-prime to its neighbours, which start with m and increase, finishing at n = m + d. Property (A) is equivalent to condition (A1), and it is easily shown that property (Ai) implies property (Ai+1). Woods showed that for some u all d have property (Au), and we conjecture and provide supporting evidence that the least such u is 2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Dowe, D. L., Some aspects of program verification and program inversion, (Ph.D. thesis, Monash University, Australia, 19851986).Google Scholar
[2]Motohashi, Y., ‘A note on the least prime in an arithmetic progression with a prime difference’, Acta Arith. 17 (1970), 283285.CrossRefGoogle Scholar
[3]Woods, A. R., Some problems in logic and number theory, and their connections, (Ph.D. thesis, University of Manchester, 1981).Google Scholar
You have Access
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the existence of sequences of co-prime pairs of integers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On the existence of sequences of co-prime pairs of integers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On the existence of sequences of co-prime pairs of integers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *