Acharyya S. K. and Ghosh S. K., ‘Functions in $C(X)$ with support lying on a class of subsets of $X$’, Topology Proc. 35 (2010), 127–148. Acharyya S. K., Chattopadhyay K. C. and Ghosh P. P., ‘The rings ${C}_{K} (X)$ and ${C}_{\infty } (X)$—some remarks’, Kyungpook Math. J. 43 (2003), 363–369. Afrooz S. and Namdari M., ‘${C}_{\infty } (X)$ and related ideals’, Real Anal. Exchange 36 (2010), 45–54. Aliabad A. R., Azarpanah F. and Namdari M., ‘Rings of continuous functions vanishing at infinity’, Comment. Math. Univ. Carolin. 45 (2004), 519–533.

Behrends E., *M*-structure and the Banach–Stone Theorem (Springer, Berlin, 1979).

Burke D. K., ‘Covering properties’, in: Handbook of Set-Theoretic Topology (eds. Kunen K.
and
Vaughan J. E.) (Elsevier, Amsterdam, 1984), 347–422.

Comfort W. W., ‘On the Hewitt realcompactification of a product space’, Trans. Amer. Math. Soc. 131 (1968), 107–118.

Engelking R., General Topology, 2nd edn (Heldermann, Berlin, 1989).

Hager A. W. and Johnson D. G., ‘A note on certain subalgebras of $C(X)$’, Canad. J. Math. 20 (1968), 389–393. Gillman L. and Jerison M., Rings of Continuous Functions (Springer, New York, 1976).

Good C., ‘The Lindelöf property’, in: Encyclopedia of General Topology (eds. Hart K. P., Nagata J.
and
Vaughan J. E.) (Elsevier, Amsterdam, 2004), 182–184.

Hodel R. E. Jr, ‘Cardinal functions I’, in: Handbook of Set-Theoretic Topology (eds. Kunen K.
and
Vaughan J. E.) (Elsevier, Amsterdam, 1984), 1–61.

Koushesh M. R., ‘Compactification-like extensions’, Dissertationes Math. (Rozprawy Mat.) 476 (2011), 88 pp.

Koushesh M. R., ‘The partially ordered set of one-point extensions’, Topology Appl. 158 (2011), 509–532.

Koushesh M. R., ‘A pseudocompactification’, Topology Appl. 158 (2011), 2191–2197.

Koushesh M. R., ‘The Banach algebra of continuous bounded functions with separable support’, Studia Math. 210 (2012), 227–237.

Koushesh M. R., ‘Connectedness modulo a topological property’, Topology Appl. 159 (2012), 3417–3425.

Koushesh M. R., ‘Topological extensions with compact remainder’, *J. Math. Soc. Japan*, in press.

Koushesh M. R., ‘Representation theorems for Banach algebras’ (submitted) arXiv:1302.2039.

Koushesh M. R., ‘Continuous mappings with null support’. *Topology Appl.*, to appear, arXiv:1302.2235.

Porter J. R. and Woods R. G., Extensions and Absolutes of Hausdorff Spaces (Springer, New York, 1988).

Stephenson R. M. Jr, ‘Initially $\kappa $-compact and related spaces’, in: Handbook of Set-Theoretic Topology (eds. Kunen K.
and
Vaughan J. E.) (Elsevier, Amsterdam, 1984), 603–632. Taherifar A., ‘Some generalizations and unifications of ${C}_{K} (X), {C}_{\psi } (X)$ and ${C}_{\infty } (X)$. arXiv:1210.6521. Vaughan J. E., ‘Countably compact and sequentially compact spaces’, in: Handbook of Set-Theoretic Topology (eds. Kunen K.
and
Vaughan J. E.) (Elsevier, Amsterdam, 1984), 569–602.

Warren N. M., ‘Properties of Stone–Čech compactifications of discrete spaces’, Proc. Amer. Math. Soc. 33 (1972), 599–606.

Weir M. D., Hewitt–Nachbin Spaces (American Elsevier, New York, 1975).